摘要:
A liquid crystal panel (9) includes a front substrate (1a) and a back substrate (1b), and a liquid crystal layer (3) provided between these substrates. A seal (4) is used to bond the front substrate (1a) and the back substrate (1b) together. A region where either of the pair of substrates is in contact with the liquid crystal layer (3) is divided into a display region (6) and a non-display region (5). The number of spacers (2) per unit area is larger in the display region (6) than in the non-display region (5). In other words, the density of the spacers (2) is different between the display region (6) and the non-display region (5), and the density of the spacers (2) is higher in the display region (6) than in the non-display region (5). According to this configuration, the display region (6) cannot be deformed significantly even under pressure from outside, and thus the non-display region (5) is deformed by the pressure.
摘要:
A liquid crystal display element (10) in accordance with the present invention includes: a pair of substrates (1), at least one of which is a flexible substrate; a liquid crystal layer (3) sealed in a gap between the pair of substrates (1); and spacer members (4), provided between the pair of substrates (1), which sustain the gap between the pair of substrates (1). A thickness of the liquid crystal layer (3) falls in a range of 93% to 98% of heights of the spacer members (4) while no pressure is applied to the spacer members. Adjacent spacer members (4) are provided at intervals of less than 400 μm.
摘要:
An object of the present invention is to provide an authenticity indicator that cannot be easily forged, that is clearly distinguishable, and that can be elaborately designed. An authenticity indicator 101 is in the form of a sheet and can be checked for its authenticity by observing the light reflected from it. The authenticity indicator comprises a first reflective layer 12 comprising a reflective area 12a that reflects specified light, and a second reflective layer 15 that reflects specified light. The reflective area of the first reflective layer has a cholesteric liquid crystalline structure. The second reflective layer comprises a volume hologram.
摘要:
The present invention provides a method of producing simply and precisely an anisotropic optical element having optical properties that are anisotropic with respect to a direction of a normal to an element plane. After forming an uncured film by applying flatwise a radiation-polymerizable cholesteric liquid crystal to a substrate (step 101), the film is heated to convert the cholesteric phase of the liquid crystal in the film into an isotropic phase (step 102). Thereafter, the isotropic phase of the liquid crystal in the film is converted into the cholesteric phase thereof, with a gas blown on the film from a predetermined direction (step 103). By doing so, the liquid crystal is oriented in such a manner that a mean direction of directions of helical axes (a main direction of helical axes) in liquid crystal domains in the film is tilted, relative to a direction of a normal to a film plane, along a stream of the gas blown. Lastly, the liquid crystal in the film is polymerized with the phase of the liquid crystal in the film maintained cholesteric (step 104). By this, the above-described state of orientation of the liquid crystal in the film is fixed as it is, and there is produced an anisotropic optical element having optical properties that are anisotropic with respect to the direction of the normal to the element plane.
摘要:
The invention provides a process capable of fabricating a cholesteric liquid crystal medium having a volume hologram with efficiency yet without recourse to complicated steps such as an alignment step. This is achievable as follows. A volume hologram layer is formed on a substrate, and a cholesteric liquid crystal layer is then formed on another substrate comprising a center substrate film that is subjected to bondable treatment. The volume hologram layer is applied to the center substrate film that is subjected to bondable treatment, and placed in a state where the volume hologram layer and cholesteric liquid crystal layer are laminated together via the substrate. The substrate is peeled off the volume hologram layer, and an adhesive layer is formed on the surface of the volume hologram layer off which the substrate is peeled off, followed by the provision of the substrate on the adhesive layer. Finally, the multilayer structure is shaped into a label form of cholesteric liquid crystal medium having a volume hologram layer.
摘要:
A volume hologram layer (2) is formed on a substrate (1), and a cholesteric liquid crystal layer (3) is then formed on the hologram layer (2). After the substrate (1) is peeled off the volume hologram layer (2), an adhesive layer (4) is formed on the surface of the volume hologram layer (2) with the substrate (1) peeled off, and another substrate (5) is then formed on the adhesive layer (4). Finally, a label form of cholesteric liquid crystal medium having a volume hologram is shaped out of the resulting multilayer structure; it is thus possible to fabricate cholesteric liquid crystal media having a volume hologram with efficiency yet without recourse to any complicated steps such as an alignment step.
摘要:
A projection screen including a polarized-light selective reflection layer having a cholesteric liquid crystalline structure that causes selective diffuse-reflection of a specific polarized-light component, and a substrate for supporting the polarized-light selective reflection layer. The polarized-light selective reflection layer includes three partial selective reflection layers, each of which contains molecules of a liquid crystal made from an organic compound, forming an organic film as a whole, and has a cholesteric liquid crystalline structure that causes selective diffuse-reflection of a specific polarized-light component. Each partial selective reflection layer of the polarized-light selective reflection layer is ordered according to wavelength of the range of light reflected. Beginning from the observation side, the order is as follows: blue (B) color wave range, green (G) color wave range, and red (R) color wave range.
摘要:
The invention provides a process capable of fabricating a cholesteric liquid crystal medium having a volume hologram with efficiency yet without recourse to complicated steps such as an alignment step. This is achievable as follows. A volume hologram layer is formed on a substrate, and a cholesteric liquid crystal layer is then formed on another substrate comprising a center substrate film that is subjected to bondable treatment. The volume hologram layer is applied to the center substrate film that is subjected to bondable treatment, and placed in a state where the volume hologram layer and cholesteric liquid crystal layer are laminated together via the substrate. The substrate is peeled off the volume hologram layer, and an adhesive layer is formed on the surface of the volume hologram layer off which the substrate is peeled off, followed by the provision of the substrate on the adhesive layer. Finally, the multilayer structure is shaped into a label form of cholesteric liquid crystal medium having a volume hologram layer.
摘要:
A radiation-curing liquid crystal having cholesteric regularity is applied to a glass substrate 11 provided with an alignment layer 12 to form a first cholesteric liquid crystal film 13 in the uncured state (FIG. 2(a)). Radiation 20 is then selectively applied, through a photomask 14, to the desired portions of the first cholesteric liquid crystal film 13 to partially cure it (FIG. 2(b)); thereafter, the first cholesteric liquid crystal film 13 is immersed in an organic solvent 22 to remove the uncured portions 13b thereof (FIG. 2(c)), thereby forming the first cholesteric liquid crystal film 13 in a desired pattern (FIG. 2(d)). Then, in the same manner as described above, a radiation-curing liquid crystal having cholesteric regularity is applied to the surface of the formed first cholesteric liquid crystal film 13 and the alignment layer 12 to form a second cholesteric liquid crystal film 13′ in the uncured state (FIG. 2(e)). To the second cholesteric liquid crystal film 13′, application of radiation 20 (FIG. 2(f)) and immersion in an organic solvent 22 (FIG. 2(g)) are carried out to remove the uncured portions 13b′ thereof (FIG. 2(e)), thereby producing an optical element 10 having the cholesteric liquid crystal films 13 and 13′ in desired patterns (FIG. 2(h)).
摘要:
An object of the present invention is to provide an authenticity indicator that cannot be easily forged, that is clearly distinguishable, and that can be elaborately designed. An authenticity indicator 101 is in the form of a sheet and can be checked for its authenticity by observing the light reflected from it. The authenticity indicator comprises a first reflective layer 12 comprising a reflective area 12a that reflects specified light, and a second reflective layer 15 that reflects specified light. The reflective area of the first reflective layer has a cholesteric liquid crystalline structure. The second reflective layer comprises a volume hologram.