摘要:
The present invention provides a heat treatment method comprising: welding a small diameter pipe (12) to a bonded joint (31) joined to a large diameter pipe (10), the small diameter pipe (12) having a diameter of 200 mm or less and a thickness of 15 mm or less, the large diameter pipe (10) having a diameter greater than that of the small diameter pipe (12); then heating the vicinity of the welded portion; and then cooling an inner surface of the pipes by use of coolant; wherein a distance between a heating area and the large diameter pipe (10) is equal to or greater than 70 mm. The heat treatment method can reduce the intention residual stress caused by welding or processing the pipes.
摘要:
A method for improving a residual stress in a pipe includes improving the residual stress in the inner surface to the compressive direction by rapid cooling of the inner surface after heating of the pipe. The heating is to heat a vicinity of a welded part of the pipe from the outer surface to raise the temperature to a construction temperature. The rapid cooling is to rapidly cool the inner surface in the vicinity of the welded part by supplying cooling water into the pipe. The heating and the rapid cooling are repeated twice or more. A method for construction management includes determining whether construction has been executed properly based on a maximum value of a lowering rate of an outer surface temperature of the pipe when the cooling water is supplied for the rapid cooling of the inner surface and a thickness of the pipe in a measuring position of the outer surface temperature.
摘要:
A method for improving a residual stress in a pipe includes improving the residual stress in the inner surface to the compressive direction by rapid cooling of the inner surface after heating of the pipe. The heating is to heat a vicinity of a welded part of the pipe from the outer surface to raise the temperature to a construction temperature. The rapid cooling is to rapidly cool the inner surface in the vicinity of the welded part by supplying cooling water into the pipe. The heating and the rapid cooling are repeated twice or more. A method for construction management includes determining whether construction has been executed properly based on a maximum value of a lowering rate of an outer surface temperature of the pipe when the cooling water is supplied for the rapid cooling of the inner surface and a thickness of the pipe in a measuring position of the outer surface temperature.
摘要:
A method for improving residual stress of a structure member, comprising steps of:disposing coolant vessels around a pipe being the structure member at an upstream position and a downstream position of a welded portion of the pipe;wrapping a heat insulation member around an outer periphery of the pipe at a center portion in an axial direction of the pipe in each of the coolant vessels;forming the ice plug in the pipe at each position disposing the coolant vessels by cooling an outer surface of the pipe wrapping the heat insulation member in the coolant vessels; andfreezing water between the ice plugs in the pipe by cooling the outer surface of the pipe between the ice plugs.
摘要:
An underwater remote inspection device is provided with an etching device and a magnifying observation device mounted to a supporting member. A chamber of the etching device is provided with a negative electrode, a positive electrode and a sealing device, and is connected to an etchant supply pipe and an etchant exhaust pipe. A single pair of annular sealing members of the sealing device is provided to a distal end portion of the chamber. A suction passage formed in the side wall of the chamber communicates to a sealing region formed between the sealing members. The magnifying observation device is provided with a magnifying camera in a waterproof container and a plurality of LED lights are installed to the waterproof container. The underwater remote inspection apparatus can prevent leakage of an etchant and reduce execution time of etching.
摘要:
An method for converting tensile residual stress on an inner surface of a welded part of a pipe to compressive residual stress with use of ice plugs formed by cooling the pipe from the outer surface, comprises the steps of: placing refrigerant containers for forming the ice plugs in the upstream and downstream of a butt-welded part; cooling the outer surface of the pipe to form the ice plugs; and then cooling the outer surface of the pipe with use of at least one refrigerant container for expanding the pipe arranged between the refrigerant containers for forming the ice plugs. When the method is applied to a pipe with a large inside diameter, the method comprises forming the ice plugs at a curved pipe, an elbow or a branch pipe in the upstream and downstream of the butt-welded part.
摘要:
An method for converting tensile residual stress on an inner surface of a welded part of a pipe to compressive residual stress with use of ice plugs formed by cooling the pipe from the outer surface, comprises the steps of: placing refrigerant containers for forming the ice plugs in the upstream and downstream of a butt-welded part; cooling the outer surface of the pipe to form the ice plugs; and then cooling the outer surface of the pipe with use of at least one refrigerant container for expanding the pipe arranged between the refrigerant containers for forming the ice plugs. When the method is applied to a pipe with a large inside diameter, the method comprises forming the ice plugs at a curved pipe, an elbow or a branch pipe in the upstream and downstream of the butt-welded part.
摘要:
A control rod for a boiling water reactor is provided with a structure element having mutually-perpendicular four blades. The four blades have a neutron absorber-filling region that neutron absorber is held, respectively. In the structure element, a plurality of regions formed in an axial direction of the control rod include a first region having a first cross-section that forms a first united cruciform cross-section of the four blades connected one another, a second region having a second cross-section that has each separated cross-section of the four blades, and a third region having a third cross-section that has a second united cross-section of continuous two blades of the four blades, disposed in a diametrically opposite direction and facing each other and each separated cross-section of remaining two blades of the four blades, disposed perpendicularly to the continuous two blades.
摘要:
An method for converting tensile residual stress on an inner surface of a welded part of a pipe to compressive residual stress with use of ice plugs formed by cooling the pipe from the outer surface, comprises the steps of: placing refrigerant containers for forming the ice plugs in the upstream and downstream of a butt-welded part; cooling the outer surface of the pipe to form the ice plugs; and then cooling the outer surface of the pipe with use of at least one refrigerant container for expanding the pipe arranged between the refrigerant containers for forming the ice plugs. When the method is applied to a pipe with a large inside diameter, the method comprises forming the ice plugs at a curved pipe, an elbow or a branch pipe in the upstream and downstream of the butt-welded part.
摘要:
An method for converting tensile residual stress on an inner surface of a welded part of a pipe to compressive residual stress with use of ice plugs formed by cooling the pipe from the outer surface, comprises the steps of: placing refrigerant containers for forming the ice plugs in the upstream and downstream of a butt-welded part; cooling the outer surface of the pipe to form the ice plugs; and then cooling the outer surface of the pipe with use of at least one refrigerant container for expanding the pipe arranged between the refrigerant containers for forming the ice plugs.When the method is applied to a pipe with a large inside diameter, the method comprises forming the ice plugs at a curved pipe, an elbow or a branch pipe in the upstream and downstream of the butt-welded part.