Abstract:
An ink composition includes a colorant, a reactive polymer latex such as an epoxy copolymer latex, an optional dissipatable polymer, a dispersant such as a sulfonated polyester, and a liquid vehicle such as water. The ink composition is a stable liquid at ambient temperature, but becomes a gel upon heating or removal of part of the liquid vehicle.
Abstract:
An ink composition includes a colorant, a polymer latex such as a terpolymer latex, an optional dissipatable polymer, a dispersant such as a sulfonated polyester, and a liquid vehicle such as water. The ink composition is a stable liquid at ambient temperature, but becomes a gel upon heating or removal of part of the liquid vehicle.
Abstract:
Ink composition that comprises one or more radiation curable oil soluble components and one or more thermal solvents are provided, as well as methods of preparing such ink compositions and methods of using such ink compositions are provided.
Abstract:
Ink compositions that include one or more radiation curable oil soluble components and one or more thermal solvents are provided, as well as methods of preparing such ink compositions and methods of using such ink compositions are provided. A jet printing method that jets an ink composition onto an intermediate substrate and transfers the intermediate image to a substrate for exposure to radiation having wavelengths within the range of about 4 nanometers to about 500 nanometers is provided.
Abstract:
An ink preferably used in piezoelectric ink jet devices includes an ink vehicle that includes at least one curable monomer, at least one polymerizable organic gelator, at least one initiator, at least one colorant and optionally at least one low molecular mass non-reactive organic gelator and/or at least one thermal solvent. The use of the curable gelator enables the ink to form a gel state having a viscosity of at least 102.5 cps at very low temperatures of about 30° C. to about 50° C. The ink may thus be jetted at low temperatures of about 50° C. to about 90° C. The ink is heated to a first temperature above the gel point of the ink, jetted onto a surface maintained at a second temperature at which the ink forms a gel state, and when on the image receiving substrate, is exposed to radiation energy to polymerize the polymerizable components of the ink.