Abstract:
When recording is performed by focusing a short pulse laser on an inside of a transparent medium such as quartz glass, and forming a minute deformed region in which the refractive index is different from that of surroundings thereof, it is difficult to ensure a recording quality. Therefore, a recorded dot length in a depth direction is monitored 111 and a power of the laser light is adjusted based on the monitored recorded dot length, or a difference between a focus position where a region of the recorded dots appears brighter than the surroundings and a focus position where the region of the recorded dots appears darker than the surroundings is measured and the power of the laser light is adjusted based on the difference.
Abstract:
When a simple magnification optical system is used in reproduction of a recording medium in which a large number of minute modified regions are three-dimensionally formed inside solid matter, contrast is insufficient and interlayer crosstalk is increased, and therefore, it is impossible to take a sufficient S/N ratio. Provided is a recording medium in which at least one layer is configured by a set of two adjacent sub-layers, and dots on a sub-layer correspond to a recording data ‘1’ and dots on the other sub-layer correspond to ‘0’. These data are played back.
Abstract:
When recording is performed by focusing a short pulse laser on an inside of a transparent medium such as quartz glass, and forming a minute deformed region in which the refractive index is different from that of surroundings thereof, it is difficult to ensure a recording quality.Therefore, a recorded dot length in a depth direction is monitored and a power of the laser light is adjusted based on the monitored recorded dot length, or a difference between a focus position where a region of the recorded dots appears brighter than the surroundings and a focus position where the region of the recorded dots appears darker than the surroundings is measured and the power of the laser light is adjusted based on the difference.
Abstract:
An HF waveform prevailing during a read operation varies due, for instance, to changes in the ambient temperature of an optical disc drive and variations in the characteristics of a laser. This degrades read performance and decreases the number of rewritable disc read operations. To address the above problems, an optical disc drive and an optical information read method are disclosed. The disclosed optical disc drive and optical information read method vary an HF amplitude in relation to the resistance, differential resistance, or temperature of the laser.
Abstract:
Proposed is an optical disk device capable of optimally adjusting a current value of a direct current and a high frequency superimposed current for driving a laser diode. This optical disk device includes a laser driver for superimposing a high frequency current on a direct current to obtain a drive current and supplying the drive current to the laser beam source and driving the laser beam source, and a control unit for adjusting a current value of the direct current and/or the high frequency superimposed current supplied by the laser driver to the laser beam source based on the servo signal or the reproduction signal. The control unit adjusts the current value of the direct current and/or the high frequency superimposed current so that a value representing a waveform fluctuation of the servo signal or the reproduction signal satisfies a specified value of the waveform fluctuation, a value representing a reproduction performance of the reproduction signal satisfies a specified value of the reproduction performance, and a value representing a durability performance of the optical disk in relation to the laser beam satisfies a specified value of the durability performance.
Abstract:
An optical disk recording method includes the steps of: providing a multi-pulse chain from a recording wave; independently changing the pulse rise timing and pulse fall timing (pulse width) of the first pulse in the multi-pulse chain in accordance with a preceding space length and a recording mark length; changing the pulse rise timing and pulse fall timing (pulse width) in accordance with a following space length and the recording mark length in a predetermined timing or in independence; and in relation to the smallest mark recorded by irradiation with mono pulse, changing the rise timing in accordance with the preceding space length and the recording mark length and the fall timing (pulse width) in accordance with the following space length and recording mark length, compensating various optical disks different in recording material without change of the fundamental waveform.
Abstract:
An optical disk recording method includes the steps of: providing a multi-pulse chain from a recording wave; independently changing the pulse rise timing and pulse fall timing (pulse width) of the first pulse in the multi-pulse chain in accordance with a preceding space length and a recording mark length; changing the pulse rise timing and pulse fall timing (pulse width) in accordance with a following space length and the recording mark length in a predetermined timing or in independence; and in relation to the smallest mark recorded by irradiation with mono pulse, changing the rise timing in accordance with the preceding space length and the recording mark length and the fall timing (pulse width) in accordance with the following space length and recording mark length, compensating various optical disks different in recording material without change of the fundamental waveform.
Abstract:
The present invention provides a multilayer optical disc and an optical disc drive which can identify recording layers without performing tracking servo control or changing the structure of the disc. In a multilayer optical disc 100, the recording layer includes a layer identification region 101 having a recording pattern for layer identification, the layer identification region 101 including a layer specific region 102 having a specific pattern and a common region 103 having a common pattern different from the specific pattern, the layer specific region 102 being provided at a different radial position in each of the recording layers. The optical disc drive detects the layer specific region 102 having the specific pattern from the layer identification region 101 of the multilayer optical disc 100, and identifies the current layer based on the radial position of the layer specific region.
Abstract:
An optical disc apparatus for recording or reproducing on or from an optical disc, comprising a laser light source for emitting a laser beam; a drive portion for driving the laser light source; a detection portion for detecting the emission power of the laser beam; and means for focusing the laser beam onto the optical disc, wherein information is reproduced by a reproducing power varied according to a recording power to obtain reproducing signals having necessary quality while suppressing deterioration of the recording quality due to the reproducing power.
Abstract:
An optical disk recording method includes the steps of: providing a multi-pulse chain from a recording wave; independently changing the pulse rise timing and pulse fall timing (pulse width) of the first pulse in the multi-pulse chain in accordance with a preceding space length and a recording mark length; changing the pulse rise timing and pulse fall timing (pulse width) in accordance with a following space length and the recording mark length in a predetermined timing or in independence; and in relation to the smallest mark recorded by irradiation with mono pulse, changing the rise timing in accordance with the preceding space length and the recording mark length and the fall timing (pulse width) in accordance with the following space length and recording mark length, compensating various optical disks different in recording material without change of the fundamental waveform.