Abstract:
A charger including a USB type-C input port configured to receive power from a power supply, a plurality of output ports each configured to couple to one of a plurality of devices to be charged, and a control logic circuit operatively coupled to the plurality of output ports and configured to manage power to the plurality of output ports. The control logic circuit is hardwired to prioritize power to a first output port of the plurality of output ports when the output port is coupled to a device such that an amount of the received power is allocated to the output port instead of at least one of the plurality of output ports that is coupled to a second device and the control logic circuit does not include an electronic processor.
Abstract:
Systems, methods and apparatus for charging a two-terminal portable electronic device. In one example, the system, method, and apparatus include detecting, with a detection circuit, the two-terminal portable electronic device and electrically coupling the two-terminal portable electronic device to a multi-pin universal serial bus connector when the two-terminal portable electronic device is coupled to a receptacle provided by a charger; and charging, with an activation circuit, the two-terminal portable electronic device using a configuration channel terminal of the multi-pin universal serial bus connector upon detection of the two-terminal portable electronic device.
Abstract:
A charger including a USB type-C input port configured to receive power from a power supply, a plurality of output ports each configured to couple to one of a plurality of devices to be charged, and a control logic circuit operatively coupled to the plurality of output ports and configured to manage power to the plurality of output ports. The control logic circuit is hardwired to prioritize power to a first output port of the plurality of output ports when the output port is coupled to a device such that an amount of the received power is allocated to the output port instead of at least one of the plurality of output ports that is coupled to a second device and the control logic circuit does not include an electronic processor.
Abstract:
A method and apparatus for multiplexing an electrical contact interface between two electrical devices uses a time differentiated enablement of two or more different circuit elements in a first electrical device that are accessed via the multiplexed contact by a second electrical device. A timing control circuit in the first electrical device enables and disables circuit elements in the first electrical device coupled to a shared information contact over time. The second electrical device interacts with a first circuit element during an initial period upon connection to the first electrical device, and then interacts with a second circuit element after the initial period.
Abstract:
A method and apparatus for charging battery connected to a device and in parallel with the device includes a clamp circuit that detects changes in the charging voltage indicative of changes in the current demand by the device. In response to detected changes in load, the charger increases charging current to prevent discharge of the battery by supplying enough current to meet increases in demand by the device.
Abstract:
Systems, methods and apparatus for charging a two-terminal portable electronic device. In one example, the system, method, and apparatus include detecting, with a detection circuit, the two-terminal portable electronic device and electrically coupling the two-terminal portable electronic device to a multi-pin universal serial bus connector when the two-terminal portable electronic device is coupled to a receptacle provided by a charger; and charging, with an activation circuit, the two-terminal portable electronic device using a configuration channel terminal of the multi-pin universal serial bus connector upon detection of the two-terminal portable electronic device.
Abstract:
Embodiments include a portable rechargeable battery pack, system, and external adapter that allow the portable rechargeable battery pack to both power a host device though a set of host contacts and provide power through a set of charging contacts. The portable rechargeable battery pack includes a charge protection circuit that prevents an excessive discharge current through the charging contacts and allows high charge current when charging the portable rechargeable battery pack. A discharge circuit allows a low level discharge current through the charging contacts to provide power to other devices.