Abstract:
The invention describes a filter element for an oil separator of a crankcase ventilation system in which a filter element is configured to separate oil from fluid and that has a covering surface extending parallel to a direction of flow, together with at least one cover element covering surface in at least some regions. An oil separator is taught having the filter element with at least one pressure control valve controlling crankcase pressure and has a valve closing body that operates in conjunction with a valve seat.
Abstract:
The invention describes a filter element for an oil separator of a crankcase ventilation system in which a filter element is configured to separate oil from fluid and that has a covering surface extending parallel to a direction of flow, together with at least one cover element covering surface in at least some regions. An oil separator is taught having the filter element with at least one pressure control valve controlling crankcase pressure and has a valve closing body that operates in conjunction with a valve seat.
Abstract:
An annular filter element and sealing element for an oil separator of a crankcase ventilation system, the filter element has a covering surface extending parallel to a direction of flow, together with at least one cover element covering surface in at least some regions. An oil separator is taught having the filter element with at least one pressure control valve controlling crankcase pressure and has a valve closing body that operates in conjunction with a valve seat. The sealing element having at least one radially sealing region that is configured to act in the direction of the radius of the annular filter element, and at least one axially sealing region that is configured to act in the direction of the longitudinal axis of the annular filter element.
Abstract:
A separating module for a ventilation device has a housing that surrounds a separating element designed to separate liquid particles from a gas flow. A line module and a ventilation device with such a separating module and such a line module are provided. The housing of the separating module is designed to be connected to the line module that has at least three geometrically parallel channels and the housing of the separating module has corresponding housing openings to be connected to the at least three channels. Several separating modules and several line modules can be combined to adapt the ventilation system as needed.
Abstract:
Disclosed are: a separation element (20) of a liquid separator (10) for the separation of liquid from an aerosol; a separation medium (38); a liquid separator (10); and a method for producing a separation element. The separation element (20) has at least one separation medium (38) for separating at least the liquid, the separation medium being arranged circumferentially about an element axis (22) in at least one medium layer (40). The aerosol is able to flow through the separation element (20) radially relative to the element axis (22). At least one medium layer (40) has, on a radially inward circumferential surface, at least one channel-shaped indentation (42) extending axially to the element axis (22) to realize at least one channel (44) for separated liquid.
Abstract:
A coalescence separator for separating liquid droplets from a gas flow is provided with a multilayer structure of a coalescence filter medium as a finest stage of the coalescence separator. The multilayer structure of the coalescence filter medium is arranged between a gas inlet and a gas outlet and surrounds a cavity. A product of an air permeability of the coalescence filter medium and a grammage of the coalescence filter medium amounts to at least 16 g/m*s and maximally 100 g/m*s. The coalescence filter medium is a glass fiber paper. The coalescence separator is used, for example, as a main oil separator in screw compressors.
Abstract:
Disclosed are: a separation element (20) of a liquid separator (10) for the separation of liquid from an aerosol; a separation medium (38); a liquid separator (10); and a method for producing a separation element. The separation element (20) has at least one separation medium (38) for separating at least the liquid, the separation medium being arranged circumferentially about an element axis (22) in at least one medium layer (40). The aerosol is able to flow through the separation element (20) radially relative to the element axis (22). At least one medium layer (40) has, on a radially inward circumferential surface, at least one channel-shaped indentation (42) extending axially to the element axis (22) to realize at least one channel (44) for separated liquid.
Abstract:
A sealing element (60) for an annular filter element (100) of an oil separator (200) of a crankcase ventilation system, wherein the annular filter element (100) is configured to separate oil from fluid. The sealing element (60) fulfills more than one sealing function and yet is easy to use and replace. The sealing element (60) having at least one radially sealing region (64) that is configured to act in the direction of the radius (120) of the annular filter element (100), and at least one axially sealing region (66) that is configured to act in the direction of the longitudinal axis (110) of the annular filter element (100).
Abstract:
An annular filter element and sealing element for an oil separator of a crankcase ventilation system, the filter element has a covering surface extending parallel to a direction of flow, together with at least one cover element covering surface in at least some regions. An oil separator is taught having the filter element with at least one pressure control valve controlling crankcase pressure and has a valve closing body that operates in conjunction with a valve seat. The sealing element having at least one radially sealing region that is configured to act in the direction of the radius of the annular filter element, and at least one axially sealing region that is configured to act in the direction of the longitudinal axis of the annular filter element.