Abstract:
A programmable multicast switch may include a first set of optical ports and a second set of optical ports. The programmable multicast switch may include a plurality of groups of optical devices optically connected in a cascading arrangement. At least one optical device in each of the plurality of groups may be a tunable optical device. Each group may be connected to an optical port of the first set of optical ports. The programmable multicast switch may include a plurality of controllers to tune each corresponding tunable optical devices. The programmable multicast switch may include a processor to control the plurality of controllers. The programmable multicast switch may include a plurality of optical switches connected to each of the groups of optical devices. Each optical switch of the plurality of optical switches may be connected to an optical port of the second set of optical ports.
Abstract:
A method may include receiving, by a switching engine, an optical signal that includes a channel. The method may include applying, by the switching engine, a first beam steering grating to direct a first portion of the channel to a first output port. The method may include applying, by the switching engine, one or more second beam steering gratings to direct at least one of a second portion of the channel to a second output port, or a third portion of the channel to a photodetector. The third portion may be approximately less, in power, than 10 percent of the channel.
Abstract:
A programmable multicast switch may include a first set of optical ports and a second set of optical ports. The programmable multicast switch may include a plurality of groups of optical devices optically connected in a cascading arrangement. At least one optical device in each of the plurality of groups may be a tunable optical device. Each group may be connected to an optical port of the first set of optical ports. The programmable multicast switch may include a plurality of controllers to tune each corresponding tunable optical devices. The programmable multicast switch may include a processor to control the plurality of controllers. The programmable multicast switch may include a plurality of optical switches connected to each of the groups of optical devices. Each optical switch of the plurality of optical switches may be connected to an optical port of the second set of optical ports.
Abstract:
A first configuration of an optical node may include a set of degrees, each including an inbound wavelength selective switch (WSS) and an outbound WSS. The first configuration may include a first degree expansion including a first inbound expansion WSS and a first outbound expansion WSS. An expansion input of the first inbound expansion WSS may connect to an expansion output of a second outbound expansion WSS included in a second degree expansion of a second configuration of the optical node. An expansion output of the first outbound expansion WSS may connect to an expansion input of a second inbound expansion WSS included in the second degree expansion of the second configuration. A signal input to an inbound WSS of a given one of the set of degrees may be routed, via the first degree expansion and the second degree expansion, to any drop port included in the second configuration.
Abstract:
In some implementations, an amplifier device may include a first amplifier configured to amplify signals in a first range of optical wavelengths. The first amplifier may include a first portion that includes one or more first optical gain components, and a second portion that includes one or more second optical gain components and a variable optical attenuator. The amplifier device may include a second amplifier configured to amplify signals in a second range of optical wavelengths. The amplifier device may include a filter for the first range of optical wavelengths and the second range of optical wavelengths. The filter may be located between the first portion and the second portion of the first amplifier.