摘要:
The invention is a method for calculating the inter-cell absolute permeability values associated with a reservoir model at the scale of the flow simulations representative of the porous medium from the absolute permeability values associated with a geologic model representative of the same porous medium.
摘要:
The invention is a computer implemented method for fast simulation of the flow of a single and incompressible fluid in a heterogeneous porous medium such as an aquifer or a petroleum reservoir having application such as, for example, to the development of petroleum reservoirs. After discretizing the medium with a grid, a permeability field is determined from which a diffusivity equation is directly solved in the spectral domain by an iterative procedure involving fast Fourier transforms. A first algorithm directly manages the pressures and velocities, but it may be slow for great permeability contrasts. A second algorithm, which introduces an intermediate variable updated at each iteration, allows faster processing of greater permeability contrasts than the first algorithm. The third algorithm, based on increased Lagrangian, allows consideration of infinite permeability contrasts. The algorithms allow simulation of flows in weakly to highly heterogeneous media, with a reduced computing time.
摘要:
A method having application notably to the development of petroleum reservoirs for fast generation of a geostatistical reservoir model on flexible grid, representative of a porous heterogeneous medium. A flexible grid best discretizing the medium is first generated. A regular Cartesian grid whose cell size, in a given direction, is greater than or equal to the largest size of the cell of the flexible grid in the same direction is then generated. On this Cartesian grid, at least one realization of petrophysical quantities characteristic of the heterogeneous medium is simulated from a geostatistical simulator. Then, this realization is resampled with a smaller discretization interval in order to know the petrophysical value associated with the realization at any point of the medium. Finally, the values of the simulated petrophysical properties are assigned to the center of the cells of the flexible grid.
摘要:
The invention is a method for fast simulation of the flow of a single and incompressible fluid in a heterogeneous porous medium such as an aquifer or a petroleum reservoir having application to the development of petroleum reservoirs. After discretizing the medium by means of a grid, a permeability field is determined from which a diffusivity equation is directly solved in the spectral domain by an iterative procedure involving fast Fourier transforms. A first algorithm directly manages the pressures and velocities, but it may be slow for great permeability contrasts. A second algorithm, which introduces an intermediate variable updated at each iteration, allows faster processing of greater permeability contrasts than the first algorithm. The third algorithm, based on increased Lagrangian, allows consideration of infinite permeability contrasts. The algorithms allow simulation of flows in weakly to highly heterogeneous media, with a reduced computing time.
摘要:
The invention is a method for calculating the inter-cell absolute permeability values associated with a reservoir model at the scale of the flow simulations representative of the porous medium from the absolute permeability values associated with a geologic model representative of the same porous medium.
摘要:
A method having application notably to the development of petroleum for fast generation of a geostatistical reservoir model on flexible grid, representative of a porous heterogeneous medium. A flexible grid best discretizing the medium is first generated. A regular Cartesian grid whose cell size, in a given direction, is greater than or equal to the largest size of the cell of the flexible grid in the same direction is then generated. On this Cartesian grid, at least one realization of petrophysical quantities characteristic of the heterogeneous medium is simulated from a geostatistical simulator. Then, this realization is resampled with a smaller discretization interval in order to know the petrophysical value associated with the realization at any point of the medium. Finally, the values of the simulated petrophysical properties are assigned to the center of the cells of the flexible grid.