Abstract:
A method for detecting a radio signal in a wireless communication system is provided. According to the method, a wireless device measures an input signal received by a RF unit of. The wireless device eliminates a duplicated part between the input signal and a complex conjugate signal of the input signal to generate a filtered signal. The wireless device determines whether a target signal exists in the input signal based on the filtered signal.
Abstract:
In an aspect, a method for transmitting data in a wireless communication system is provided. A wireless device determines a subcarrier and a subcarrier group to which a data sequence is allocated. The wireless device modulates the data sequence by a transmit filter to generate a data stream. A waveform of the transmit filter is determined based on the subcarrier and the subcarrier group. The wireless device generates a transmission signal based on the data stream. The wireless device transmits the transmission signal through the subcarrier. The transmission signal is cyclostationary.
Abstract:
A method of transmitting a signal based on multi-stream CPDMA may include: allocating a plurality of data symbols to each of a plurality of data streams based on a frequency hopping pattern; applying a DFT function and a M-times repetition function to the data symbol allocated to the each of the plurality of data streams; applying a spectral weighting vector to the each of the plurality of data streams applying the DFT function and the M-times repetition function; and generating the signal based on the multi-stream CPDMA by performing an IDFT function and a cyclic prefix adding procedure with respect to the plurality of data streams to which the spectral weighting vector is applied, in which the spectral weighting vector is a vector for determining a frequency band in which the each of the plurality of data streams is used.
Abstract:
A method for allocating resources in a wireless communication system is provided. A base station receives a maximum transmission power from a first wireless device. The base station allocates a resource to the first wireless device based on a ratio of the maximum transmission power to a maximum available resource.
Abstract:
Disclosed are a method and an apparatus for transforming a data symbol for interference avoidance. The method for transforming a data symbol includes; dividing a plurality of proper data symbols into a plurality of data streams; granting individual spectral weightings to the plurality of respective data streams; combining the plurality of data streams granted with the individual spectral weightings into one final data stream; performing inverse discrete Fourier transform (IDFT) of the final data stream; and adding a cyclic prefix (CP) to the plurality of data streams that is subjected to the IDFT, wherein each of the plurality of data streams granted with the individual spectral weightings include an improper data symbol.
Abstract:
Disclosed are a method and an apparatus of interference alignment in a cellular network. The method of interference alignment in the cellular network includes: receiving, by a base station, an improper signal from a terminal; and decoding, by the base station, the improper signal based on an improper decoding vector, wherein the improper signal is a signal generated by only a modulation symbol corresponding to a real number value, the improper decoding vector is determined based on an improper precoding vector, and the improper precoding vector has only the real value and separates a real number space and an imaginary number space of a received signal.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method of a reception device in a wireless environment according to various embodiments of the present disclosure may include receiving a signal from a transmission device, identifying that the received signal is modulated based on at least one designated modulation scheme of modulation schemes, based on identifying, generating second values by applying a first circular shift of a first direction to first values relating to first symbols of the signal, and generating third values by applying a second circular shift of a second direction which is different from the first direction, to complex conjugate values of the first values, generating second symbols of the signal based at least in part on the second values and the third values, and obtaining data about the signal based at least in part on the second symbols.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method and apparatus for transmitting and receiving signals using a variable observation length in a multi-carrier system using the non-orthogonal transmission signal. A receiver performs fast Fourier transform on reception vectors contained in the signal, equalizes the fast Fourier transformed reception vectors by a 1-tap zero forcing equalizer, and applies a reception filter based on the observation length to the equalized reception vectors. A transmitter includes a transceiver configured to transmit and receive a signal, and a controller configured to cause the transceiver to transmit an indicator for a Modulation and Coding Scheme (MCS) level to a receiver based on a channel state, and transmit a signal applied with the MCS level to the receiver.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-generation (4G) communication system, such as long-term evolution (LTE). An operation method of a transmitter in a wireless communication system is provided. The method includes applying a filter to data, mapping the data to which the filter is applied to at least one subcarrier, and transmitting the mapped data to a receiver. The filter is determined based on based on the allocated resource.
Abstract:
A transmission and reception method and apparatus for reducing a PAPR in an orthogonal frequency division multiplexing (OFDM) system are provided. A transmission method includes performing constellation rotation with respect to L input data symbols, performing L-point DFT spreading and circular extension on the constellation-rotated L data symbols to be K symbols, performing frequency domain (FD) windowing processing by multiplying the K circular-extended data symbols by a circular filter coefficient, and transmitting the processed data symbols.