Abstract:
A system and method for controlling the fuser assembly of an electrophotographic imaging device, including initiating reading line current and line voltage for a plurality of consecutive AC cycles; from the AC cycle readings, identifying heater on cycles in which power is applied to the fuser heater and heater off cycles in which power is not applied to the fuser heater; calculating heater power from the identified heater on cycles and the heater off cycles, the heater power being the power of the fuser heater during a predetermined heater on cycle of the consecutive AC cycles; calculating a fuser heater voltage of the fuser heater during the predetermined heater on cycle based on the voltage readings; calculating a resistance of the fuser heater based on the calculated heater power and the calculated fuser heater voltage; and controlling the fuser assembly based upon the calculated resistance of the fuser heater.
Abstract:
A method for estimating an amount of toner remaining in a reservoir of a replaceable unit for an image forming device according to one example embodiment includes receiving by processing circuitry pulses from a magnetic sensor. Each pulse is indicative that the magnetic sensor detected a magnet on a moving paddle positioned in the reservoir. The processing circuitry counts the number of the pulses received from the magnetic sensor. Upon receiving a request from a controller of the image forming device, the processing circuitry sends to the controller of the image forming device the count of the pulses received from the magnetic sensor and resets the count of the pulses received from the magnetic sensor.
Abstract:
A replaceable unit for an electrophotographic image forming device according to one example embodiment includes a housing having a reservoir for storing toner. A rotatable shaft is positioned within the reservoir. A drive element is exposed on an exterior of the housing unobstructed to receive rotational force. The drive element is operatively connected to the shaft to rotate the shaft upon receiving the rotational force. A sensor is positioned to sense a rotational motion of the shaft. A processor is mounted on the housing and in electrical communication with the sensor. An electrical contact in electrical communication with the processor is exposed on the exterior of the housing unobstructed to mate with a corresponding electrical contact in the image forming device. The processor is programmed to send information related to the rotational motion sensed by the sensor to a controller in the image forming device.
Abstract:
A system and method for controlling the fuser assembly of an electrophotographic imaging device, including determining a resistance of the fuser heater at a predetermined temperature that is less than a fusing temperature for performing a fusing operation; calculating a set point heater resistance based on the determined heater resistance, the set point heater resistance being a resistance of the fuser heater at a predetermined set point temperature; reading a line voltage to the electrophotographic imaging device at a first time; calculating heater power based on the line voltage reading and the calculated set point heater resistance; and controlling a speed of a fusing operation based on the calculated heater power.
Abstract:
A method for estimating an amount of toner remaining in a reservoir of a replaceable unit for an image forming device according to one example embodiment includes receiving by processing circuitry pulses from a magnetic sensor. Each pulse is indicative that the magnetic sensor detected a magnet on a moving paddle positioned in the reservoir. The processing circuitry counts the number of the pulses received from the magnetic sensor. Upon receiving a request from a controller of the image forming device, the processing circuitry sends to the controller of the image forming device the count of the pulses received from the magnetic sensor and resets the count of the pulses received from the magnetic sensor.
Abstract:
A capacitive sensor for sensing amount of waste toner in a waste toner box of an imaging apparatus includes a capacitor that has a pair of separated plates disposed within the interior of the waste toner box. The capacitance of the capacitor changes with the amount of toner in between the plates of the capacitor. A sensor circuitry is connected to the plates of the waste toner box that measure the capacitance of the capacitor as a voltage value. This voltage value is provided to a controller that determines a relative change in the capacitance value by determining a change in capacitance of the capacitor with respect to a number of pages printed by the imaging apparatus. The controller then determines the state of the waste toner box based on this relative change in capacitance.
Abstract:
A toner cartridge according to one example includes a housing having a toner reservoir, an exit for exiting toner and an entry port for receiving waste toner. A partition divides the reservoir into a first compartment for storing fresh toner and a second compartment for storing waste toner. The first compartment is in fluid communication with the exit. The partition is movable within the reservoir between a first position and a second position. The entry port is in fluid communication with the first compartment when the partition is in the first position such that waste toner received through the entry port is deposited into the first compartment. The entry port is in fluid communication with the second compartment but closed off from the first compartment when the partition is in the second position such that waste toner received through the entry port is deposited into the second compartment.
Abstract:
A method for estimating an amount of toner remaining in a reservoir of a replaceable unit for an image forming device according to one example embodiment includes receiving by processing circuitry pulses from a sensor. The processing circuitry counts the number of the pulses received from the sensor. Upon receiving a request from a controller of the image forming device, the processing circuitry sends to the controller of the image forming device the count of the pulses received from the sensor and resets the count of the pulses received from the sensor.
Abstract:
A method of operating an imaging device is disclosed. The imaging device is designed to start the imaging process before picking a sheet. During a pick retry, the device waits to start the imaging process until after the sheet is picked successfully. This method improves pick reliability and reduces wasted toner. Other systems and methods are disclosed.
Abstract:
A replaceable unit for an electrophotographic image forming device according to one example embodiment includes a housing having a reservoir for storing toner. A rotatable shaft is positioned within the reservoir. A drive element is exposed on an exterior of the housing unobstructed to receive rotational force. The drive element is operatively connected to the shaft to rotate the shaft upon receiving the rotational force. A sensor is positioned to sense a rotational motion of the shaft. A processor is mounted on the housing and in electrical communication with the sensor. An electrical contact in electrical communication with the processor is exposed on the exterior of the housing unobstructed to mate with a corresponding electrical contact in the image forming device. The processor is programmed to send information related to the rotational motion sensed by the sensor to a controller in the image forming device.