Abstract:
A vapor distributor for use in an internal region of a mass transfer column to receive and redistribute a vapor stream when it is introduced radially into the internal region through a radial inlet in a shell of the mass transfer column. The vapor distributor includes a plurality of multiple-sided elongated deflectors arranged in a descending array and a pair of braces that extend longitudinally across the array of elongated deflectors and hold them in spaced apart and side-by-side relationship to each other. Each of the elongated deflectors has a deflecting surface that faces toward the radial inlet to redirect and redistribute the radially-introduced vapor stream. The braces each include a strut that may also redirect and redistribute the vapor stream.
Abstract:
A cross-corrugated structured packing element is provided for use in mass transfer or heat exchange columns. The packing element has a plurality of packing layers positioned in an upright, parallel relationship to each other and including corrugations formed of alternating peaks and valleys and corrugation sidewalls extending between the peaks and valleys. The packing element also includes a plurality of apertures each presenting an open area. The apertures are distributed such that the corrugation sidewalls have a greater density of open areas than any density of the open areas that may be present in the peaks and valleys. Some of the apertures may be present in the peaks and the valleys to facilitate liquid distribution. The apertures may also be placed in rows or other patterns that are aligned in a direction along a longitudinal length of the corrugations. Regions with a larger apex radius may be formed in the peaks, such as by depressing spaced-apart segments of the peaks to form spacers in the undepressed portions of the peaks. Some of the apertures may be positioned in the transitions from the depressed portions of the peaks to the unmodified apex sections.
Abstract:
A contact tray for use in a mass transfer or heat exchange column and having a tray deck with an inlet area and a remotely positioned outlet for respectively receiving liquid on the tray deck and then removing the liquid after it has flowed across the tray deck and interacted with another fluid on and above the tray deck. A plurality of barriers are positioned between the inlet area and the outlet. The barriers each have spaced-apart pickets and openings in the spacing between adjacent ones of the pickets. The pickets impede the flow of the liquid and increase the upstream liquid loading on the tray deck as the liquid flows from the inlet area, through the openings, and then into the outlet. At low liquid flow rates, this increase in the liquid loading may significantly increase the vapor handling capacity of the tray.
Abstract:
A cyclone for a cyclone mist eliminator. The cyclone has an inner wall enclosing an inner chamber having an inlet end and an opposed outlet end, an outer wall surrounding and spaced outwardly from the inner wall to create an outer chamber in a spacing between the inner wall and the outer wall, openings foamed in the inner wall to permit fluid in the inner chamber to pass through the openings and into the outer chamber, a swirler positioned at the inlet end of the inner chamber, and a fiber pad positioned in the outer chamber.
Abstract:
A cyclone for a cyclone mist eliminator. The cyclone has an inner wall enclosing an inner chamber having an inlet end and an opposed outlet end, an outer wall surrounding and spaced outwardly from the inner wall to create an outer chamber in a spacing between the inner wall and the outer wall, openings foamed in the inner wall to permit fluid in the inner chamber to pass through the openings and into the outer chamber, a swirler positioned at the inlet end of the inner chamber, and a fiber pad positioned in the outer chamber.
Abstract:
A cross-corrugated structure packing module is provided for use in mass transfer or heat exchange columns and has particular applicability in severe service applications in which fouling, coking, and erosion are of concern. The structured packing module has a plurality of upright, parallel-extending, corrugated plates. Spacer elements are used to maintain the corrugations of adjacent plates in spaced apart relationship to reduce the opportunity for solids to accumulate on the surfaces of the plates. The plates are also free of apertures or surface treatments that would increase the opportunity for solids to accumulate on the plates.
Abstract:
The contacting device for countercurrent contacting of fluid streams and having a first pair of intersecting grids of spaced-apart and parallel deflector blades and a second pair of intersecting grids of spaced-apart and parallel deflector blades. The deflector blades in each one of the grids are interleaved with the deflector blades in the paired intersecting grid and may have uncut side portions that join them together along a transverse strip where the deflector blades cross each other and cut side portions that extend from the uncut side portions to the ends of the deflector blades. At least some of the deflector blades have directional tabs and associated openings to allow portions of the fluid streams to pass through the deflector blades to facilitate mixing of the fluid streams.
Abstract:
A static mixing device subassembly that can be joined with other static mixing device subassemblies to form a static mixing device. The subassembly comprises a first pair of intersecting grids of spaced-apart and parallel deflector blades and a second pair of intersecting grids of spaced-apart and parallel deflector blades. The deflector blades in each one of the grids are interleaved with the deflector blades in the paired intersecting grid and have uncut side portions that join them together along a transverse strip where the deflector blades cross each other and cut side portions that extend from the uncut side portions to the ends of the deflector blades. Each of the deflector blades in one of the grids in each pair of grids has a bent portion that places segments of the deflector blade on opposite sides of the uncut portion in offset parallel planes. Some or all of the deflector blades in the other one of the grids in one of the pairs of grids has uncut ends that are interconnected with uncut ends of deflector blades in the other one of the grids in the other one of the pairs of grids along a reverse bend that aligns one of the pairs of grids with the other pair of grids.
Abstract:
An inlet device for use in a vessel to facilitate separation of a gas phase from a liquid phase in a fluid stream. The inlet device has separation cans positioned at each of the outlet ends of a flow channel. Each separation can has a cylindrical wall and an elongated inlet opening in the cylindrical wall to allow the fluid stream to be introduced in a tangential direction into an open interior region where it swirls to facilitate separation of the gas phase from the liquid phase in the fluid stream. The liquid phase exits the separation can through slots in the cylindrical wall and through an open lower end of the open interior region. The gas phase exits the separation can by ascending upwardly through an open upper end of the open interior region.
Abstract:
A liquid distributor is provided for receiving and distributing a liquid stream in a mass transfer column. The liquid distributor has a plurality of elongated primary troughs and a plurality of secondary troughs that are positioned adjacent the primary troughs at a location to receive at least some of the individual primary discharge streams from the primary troughs. Splash baffles are spaced a preselected distance from liquid discharge holes in the side walls of the secondary troughs to receive at least some of the individual secondary discharge streams and cause a lateral spreading thereof as the individual second discharge streams descend along the splash baffles and drip from lower edges thereof.