Abstract:
An image forming apparatus (100) forms an image on a recording medium. The image forming apparatus (100) includes a substrate (161), a photosensitive drum (120), a heating element (163) that heats the photosensitive drum (120), a light emitting element (162) that performs static elimination on the photosensitive drum (120), and a metal member (167) that transfers heat from the heating element (163) to the photosensitive drum (120). The light emitting element (162) and the heating element (163) are mounted on one of main surfaces of the substrate (161). The metal member (167) is in contact with another of the main surface of the substrate (161).
Abstract:
An image forming apparatus includes an image carrier, a charge roller, a cleaning brush and a distance changing mechanism. The charge roller includes a surface having protrusions and depressions and to electrically charge the image carrier. The cleaning brush includes a brush part cleaning the surface of the charge roller and a main body part supporting the brush part. The brush part includes a top end part and a belly part being nearer to the main body part than the top end part. The distance changing mechanism changes a distance between the charge roller and main body part so that, by adjusting the distance to a first distance, the top end part contacts with the depression and, by adjusting the distance to a second distance shorter than the first distance, the belly part contacts with the protrusion.
Abstract:
An image forming apparatus (100) forms an image on a recording medium. The image forming apparatus (100) includes image forming units (110). Of the image forming units (110), one or more image forming units are intermediate image forming units, and one or more image forming units adjacent to a side of the intermediate image forming units and one or more image forming units adjacent to an opposite side of the intermediate image forming units are side image forming units. The image forming units (110) each include a photosensitive drum (120), a light emitting element (162) performing static elimination on the photosensitive drum (120), and a heating element (163) heating the photosensitive drum (120). The heating elements (163) of the intermediate image forming units receive supply of electric power different in quantity from that of which supply the heating elements (163) the side image forming units receive.
Abstract:
An image forming apparatus includes an image bearing member, a conductive member, a bias application device, and a control portion. The image bearing member has a photosensitive layer formed on an outer peripheral surface thereof. The conductive member is disposed so as to make contact with an inner peripheral surface of the image bearing member and has a dielectric property. The bias application device applies a bias including an alternating current bias to the conductive member. The control portion controls the bias application device. The image forming apparatus is capable of executing a heating-up mode in which an alternating current bias having a peak-to-peak value twice or more as large as a discharge start voltage between the conductive member and the image bearing member is applied to the conductive member to cause the surface of the image bearing member to be heated up.
Abstract:
A cleaning device includes a rotary member, a sheet member, and a toner conveying member. The rotary member is held in contact with a cylindrical surface of an image carrier above a rotation axis of the image carrier. The sheet member is in contact at a distal end thereof with the cylindrical surface of the image carrier above the rotation axis of the image carrier and upstream of a contact position of the rotary member with the cylindrical surface of the image carrier in a direction of rotation of the image carrier. The toner conveying member is disposed above the sheet member and facing the peripheral surface of the rotary member.
Abstract:
A photosensitive member refreshing device includes an image bearing member, an exposure device, a developing device, a detecting section, a cleaning section, and a control section. The image bearing member has a photosensitive roller rotatable about a rotation axis. The exposure device exposes the photosensitive roller to light according to an exposure pattern. The developing device supplies a toner to the photosensitive roller to form a toner image corresponding to the exposure pattern on the photosensitive roller after the exposure device has exposed the photosensitive roller to light. The detecting section detects the toner image on the image bearing member. The cleaning section cleans a surface of the photosensitive roller. The control section controls the exposure pattern based on a result of detection by the detecting section.
Abstract:
An image forming apparatus has an image carrying body, a first electrically conductive member, a bias application device, and a controller. The first electrically conductive member makes contact with the photosensitive layer of the image carrying body The bias application device applies a bias containing an AC bias to the first electrically conductive member. The controller controls the bias application device. The image forming apparatus can execute, while no image formation is being performed, a temperature raising mode in which, with the first electrically conductive member in contact with the image carrying body outside the image formation region, an AC bias having a peak-to-peak value twice as high as the discharge start voltage between the first electrically conductive member and the image carrying body is applied to the first electrically conductive member to raise the temperature of the surface of the image carrying body.
Abstract:
An image forming apparatus includes an image bearing member, a first conductive member, a bias application device, and a control portion, and performs image formation on a surface of the image bearing member while making the image bearing member rotate. The image forming apparatus is capable of executing a heating-up mode in which, at the time of non-image formation, in a state where the image bearing member is made to rotate at a velocity lower than that used at the time of image formation, an alternating current bias having a frequency higher than that used at the time of image formation and a peak-to-peak value twice or more as large as a discharge start voltage between the first conductive member and the image bearing member is applied to the first conductive member to cause a surface of the image bearing member to be heated up.