Abstract:
A drum cleaning device includes a toner supply roller, a toner layer restricting member, and a toner receiving member. The toner layer restricting member includes an inclined portion formed in a lateral region outside of an image forming region to incline gradually away from a surface of a cleaning roller with increasing distance from an inner side of the lateral region. The toner receiving member includes a lower-level upper end portion provided in the lateral region outside of the image forming region, the lower-level upper end portion being located below a second contact region where the cleaning roller and the toner supply roller come into contact with each other. The inclined portion is disposed in a region overlapping the lower-level upper end portion.
Abstract:
A charging device includes a housing, a charging roller, and a brush roller. The housing is disposed adjacent to an optical path of light emitted an the exposure device to irradiate a photoconductor. Charging roller is rotatably supported in housing, and is configured to charge a circumferential surface of the photoconductor through contact. Brush roller is rotatably supported in housing together with charging roller, has multiple brush hairs flocked on a base shaft thereof extending in a longitudinal direction of the charging roller, and is configured to clean a surface of charging roller when brush hairs are brought in contact with charging roller. Furthermore, a predetermined segment of housing is located in a space within a predetermined distance toward a side of housing from the optical path, and is formed from a material having a charge property equivalent to that of the brush hairs.
Abstract:
An image forming apparatus includes: an image carrier, a developing section, a transfer roller, a power supply section, a conveyance roller, and an operation control section. The operation control section has a cleaning operation mode and an image formation operation mode where images are formed on recording paper. In the cleaning operation mode, the operation control section causes the developing section to supply a predefined amount of toner to a circumferential surface of the image carrier, causes the power supply section to apply a bias of a polarity opposite to a normal charge polarity to the transfer roller, then causes the conveyance roller to convey a single piece of recording paper, causes the conveyance roller to stop rotating operation when the recording paper is located in a nip area, and causes the image carrier and the transfer roller to rotate while the recording paper is stopped in the nip area.
Abstract:
The light emitting portions 140 are mounted on the substrate 120, and emit neutralization light. The first end engagement portion 115 is engaged with the first end portion 121 of the substrate 120 opposite to the image carrier 2. The partitioning member 130 is connected to the housing 110, so as to form an opened portion that is opened to face the surface of the image carrier 2. The plurality of restriction protrusions 150 are arranged along an axial direction of the image carrier 2. The first end engagement portion 115 is disposed in the central portion of the plurality of restriction protrusions 150 in the arrangement direction. The arrangement direction of the plurality of restriction protrusions 150 curves, such that a central portion of the restriction protrusions in the axial direction is closer to the image carrier than end portions of the restriction protrusions in the axial direction.
Abstract:
An image forming apparatus includes an image carrier carrying a toner image, a developing device, and a cleaning blade. The developing device carries out developing process feeding toner to the image carrier during image forming. The cleaning blade comes into contact with the image carrier and removes waste toner remained on the image carrier. In order to restrain turning-up of the cleaning blade, turning-up restraining process is carried out to feed the toner from the developing device to the image carrier during non-image forming, every time a given cumulative printing number of image forming operation is finished. In the turning-up restraining process, larger toner is fed to the image carrier as a given small size printing number in the cumulative printing number becomes larger.
Abstract:
A static eliminating device includes: a housing; a substrate mounted to the housing; a light-emitting part mounted on a mounting surface of the substrate; a partition member connected to the housing to cover the substrate and the light-emitting part and face a portion of the housing to which the substrate and the light-emitting part are mounted so that an opening facing the surface of the image carrier is formed in a light-emitting region across which light is delivered from the light-emitting part to the surface of the image carrier; and a restricting protrusion abutting at a distal end thereof against the partition member to support the partition member and restricting the position of the partition member to ensure the formation of the opening. A distal side portion of the restricting protrusion located within the light-emitting region has a tapered shape narrowing with approach toward the partition member.
Abstract:
A static eliminating device includes: a housing; a substrate mounted to the housing; a light-emitting part mounted on a mounting surface of the substrate; a partition member connected to the housing to cover the substrate and the light-emitting part and face a portion of the housing to which the substrate and the light-emitting part are mounted so that an opening facing the surface of the image carrier is formed in a light-emitting region across which light is delivered from the light-emitting part to the surface of the image carrier; and a restricting protrusion abutting at a distal end thereof against the partition member to support the partition member and restricting the position of the partition member to ensure the formation of the opening. A distal side portion of the restricting protrusion located within the light-emitting region has a tapered shape narrowing with approach toward the partition member.
Abstract:
The light emitting portions 140 are mounted on the substrate 120, and emit neutralization light. The first end engagement portion 115 is engaged with the first end portion 121 of the substrate 120 opposite to the image carrier 2. The partitioning member 130 is connected to the housing 110, so as to form an opened portion that is opened to face the surface of the image carrier 2. The plurality of restriction protrusions 150 are arranged along an axial direction of the image carrier 2. The first end engagement portion 115 is disposed in the central portion of the plurality of restriction protrusions 150 in the arrangement direction. The arrangement direction of the plurality of restriction protrusions 150 curves, such that a central portion of the restriction protrusions in the axial direction is closer to the image carrier than end portions of the restriction protrusions in the axial direction.
Abstract:
A drum cleaning device includes a toner supply roller, a toner layer restricting member, and a toner receiving member. The toner layer restricting member includes an inclined portion formed in a lateral region outside of an image forming region to incline gradually away from a surface of a cleaning roller with increasing distance from an inner side of the lateral region. The toner receiving member includes a lower-level upper end portion provided in the lateral region outside of the image forming region, the lower-level upper end portion being located below a second contact region where the cleaning roller and the toner supply roller come into contact with each other. The inclined portion is disposed in a region overlapping the lower-level upper end portion.
Abstract:
A charging device includes a housing, a charging roller, and a brush roller. The housing is disposed adjacent to an optical path of light emitted an the exposure device to irradiate a photoconductor. Charging roller is rotatably supported in housing, and is configured to charge a circumferential surface of the photoconductor through contact. Brush roller is rotatably supported in housing together with charging roller, has multiple brush hairs flocked on a base shaft thereof extending in a longitudinal direction of the charging roller, and is configured to clean a surface of charging roller when brush hairs are brought in contact with charging roller. Furthermore, a predetermined segment of housing is located in a space within a predetermined distance toward a side of housing from the optical path, and is formed from a material having a charge property equivalent to that of the brush hairs.