Abstract:
Disclosed is an injection mold. The injection mold includes a mold set having n molds (n is a natural number of ≥2) defining a cavity for injection molding a green body, and at least one ejector provided on at least one of the n molds to separate an injection-molded part from the mold set. The ejector is provided with a first heater capable of heating the mold set to a first temperature.
Abstract:
Disclosed is a method of manufacturing a porous ceramic body, which includes: (S1) mixing silica powders having a particle size of 0.045˜0.5 mm, zircon flour and wax, thus preparing a ceramic mixture; (S2) placing the ceramic mixture into a mold, thus producing a green body; and (S3) sintering the green body at high temperature, thus obtaining a porous ceramic body, wherein the silica having a particle size of 0.1˜0.5 mm is contained in an amount of 50˜80 wt % based on the total weight of the porous ceramic body; and also which produces a bulk porous ceramic body having good strength and leaching properties with excellent dimensional stability and shape stability.
Abstract:
Disclosed is a method of manufacturing a porous ceramic body, which includes: (S1) mixing silica powders having a particle size of 0.045˜0.5 mm, zircon flour and wax, thus preparing a ceramic mixture; (S2) placing the ceramic mixture into a mold, thus producing a green body; and (S3) sintering the green body at high temperature, thus obtaining a porous ceramic body, wherein the silica having a particle size of 0.1˜0.5 mm is contained in an amount of 50˜80 wt % based on the total weight of the porous ceramic body; and also which produces a bulk porous ceramic body having good strength and leaching properties with excellent dimensional stability and shape stability.