Abstract:
Methods and devices are disclosed for automated detection of a status of wafer fabrication process based on images. The methods advantageously use segment masks to enhance the signal-to-noise ratio of the images. Metrics are then calculated for the segment mask variations in order to determine one or more combinations of segment masks and metrics that are predictive of a process non-compliance. A model can be generated as a result of the process. In another embodiment, a method uses a model to monitor a process for compliance.
Abstract:
Methods and systems for monitoring process tool conditions are disclosed. The method combines single wafer, multiple wafers within a single lot and multiple lot information together statistically as input to a custom classification engine that can consume single or multiple scan, channel, wafer and lot to determine process tool status.
Abstract:
Methods and systems for monitoring process tool conditions are disclosed. The method combines single wafer, multiple wafers within a single lot and multiple lot information together statistically as input to a custom classification engine that can consume single or multiple scan, channel, wafer and lot to determine process tool status.
Abstract:
Methods and devices are disclosed for automated detection of a status of wafer fabrication process based on images. The methods advantageously use segment masks to enhance the signal-to-noise ratio of the images. Metrics are then calculated for the segment mask variations in order to determine one or more combinations of segment masks and metrics that are predictive of a process non-compliance. A model can be generated as a result of the process. In another embodiment, a method uses a model to monitor a process for compliance.