Abstract:
Magnetic materials, having: a composition represented by a general formula: (R1-yXy)x(Fe1-aMa)100-x where, R is at least one of element selected from the group consisting of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y, X is at least one of element selected from the group consisting of Ti, Zr and Hf, M is at least one of element selected from the group consisting of V, Cr, Mn, Ni, Cu, Zn, Nb, Mo, Ta, W, Al, Si, Ga and Ge, x is a value satisfying 4≦x≦20 atomic %, y is a value satisfying 0.01≦y≦0.9, and a is a value satisfying 0≦a≦0.2, wherein the magnetic material includes a Th2Ni17 crystal phase or a TbCu7 crystal phase as a main phase, that are useful for magnetic refrigeration.
Abstract:
According to one embodiment, a heat exchanger includes a container, and a plurality of heat exchange components. The container is fed with a heat transport medium. The plurality of heat exchange components is provided with a prescribed spacing inside the container. The plurality of heat exchange components is provided along a flowing direction of the heat transport medium so as not to overlap at least partly as viewed in the flowing direction of the heat transport medium.
Abstract:
A composite material for magnetic refrigeration is provided. The composite material for magnetic refrigeration includes a magnetocaloric effect material having a magnetocaloric effect; and a heat conductive material dispersed in the magnetocaloric effect material. The heat conductive material is at least one selected from the group consisting of a carbon nanotube and a carbon nanofiber.