Abstract:
According to one embodiment, a manufacturing method of an electrode, includes coating a first surface of a current collector with slurry, coating a second surface of the current collector with the slurry, and drying. The first and second surfaces are coated with the slurry in such a way that a slurry coated portion and a slurry non-coated portion are alternately arranged in a direction perpendicular to a moving direction of the current collector. The slurry non-coated portion is arranged on annular protruding portions of a backup roll. The slurry coated portion is dried by a drying apparatus. A formula (1), 0
Abstract:
According to one embodiment, there is provided a nonaqueous electrolyte secondary battery. A negative electrode current collector comprises a coated portion on which the negative electrode active material layer is provided and a noncoated portion which is adjacent to the coated portion, in which the negative electrode active material layer is not present. A density of the negative electrode active material layer is within a range of 2.1 g/cc to 2.4 g/cc. A ratio W1/W2 of a mass of the coated portion per unit area (W1) to a mass of the noncoated portion per unit area (W2) is from 0.997 to 1.
Abstract:
According to one embodiment, there is provided a nonaqueous electrolyte secondary battery. A positive electrode current collector comprises a coated portion on which the positive electrode active material layer is provided and a noncoated portion which is adjacent to the coated portion in a direction parallel to the first surface, in which the positive electrode active material layer is not present. A density of the positive electrode active material layer is within a range of 3.1 g/cc to 3.4 g/cc. A ratio W1/W2 of a mass of the coated portion per unit area (W1) to a mass of the noncoated portion per unit area (W2) is from 0.997 to 1.
Abstract:
In a stereolithography apparatus according to an embodiment, for example, a first optical system emits a first light to a photocurable material. A second optical system emits a second light to the photocurable material such that the second light linearly intersects the first light in a first direction in the photocurable material. An area setter sets, for at least one of the first light and the second light, a first area and a second area having different optical properties from each other, at an intersection of the first light and the second light in the first direction. A moving mechanism moves the intersection of the first light and the second light. The stereolithography apparatus cures the photocurable material at the intersection of the first light and the second light.
Abstract:
According to one embodiment, a manufacturing method of an electrode includes supplying a current collector, coating the current collector with a slurry and drying the slurry. In the manufacturing method of the electrode, the current collector is supplied onto a backup roll including annular protruding portions formed on an outer circumferential surface of the backup roll. A surface of the current collector excluding a portion arranged on a plurality of the annular protruding portions is coated with slurry containing an active material. And, then, the slurry is dried.