Abstract:
Disclosed is a system for fabricating a liquid crystal display using liquid crystal dropping and a method of fabricating a liquid crystal display using the same. The present invention includes a liquid crystal forming line dropping liquid crystals on the first substrate, a sealant forming line forming the sealant on the second substrate, and a bonding and hardening line bonding the two substrates to each other and hardening the sealant, printing a sealant, bonding the substrates each other, and hardening the sealant and an inspection process line of cutting the bonded substrates into panel units and grinding and inspecting the unit panels. And, the GAP process line includes And, the present invention includes the processes of dropping LC on a first substrate using a dispenser, forming a main UV hardening sealant on a second substrate, bonding the first and second substrates to each other in a vacuum state, UV-hardening the main UV hardening sealant, cutting the bonded substrates into cell units, grinding the cut substrates, and inspecting the grinded substrates finally.
Abstract:
An LCD device and a method of manufacturing the same are disclosed, which prevents a liquid crystal from being filled imperfectly or excessively in an active region, thereby obtaining a uniform cell gap and improving picture quality characteristics. The LCD device includes a lower substrate and an upper substrate, a UV sealant between the lower and upper substrates, the UV sealant having a portion for controlling a liquid crystal flow at four corner regions, and a liquid crystal layer between the lower and upper substrates.
Abstract:
Disclosed is a system for fabricating a liquid crystal display using liquid crystal dropping and a method of fabricating a liquid crystal display using the same. The present invention includes a liquid crystal forming line dropping liquid crystals on the first substrate, a sealant forming line forming the sealant on the second substrate, and a bonding and hardening line bonding the two substrates to each other and hardening the sealant, printing a sealant, bonding the substrates each other, and hardening the sealant and an inspection process line of cutting the bonded substrates into panel units and grinding and inspecting the unit panels. And, the GAP process line includes And, the present invention includes the processes of dropping LC on a first substrate using a dispenser, forming a main UV hardening sealant on a second substrate, bonding the first and second substrates to each other in a vacuum state, UV-hardening the main UV hardening sealant, cutting the bonded substrates into cell units, grinding the cut substrates, and inspecting the grinded substrates finally.
Abstract:
A system for fabricating a liquid crystal display using liquid crystal dropping and a method of fabricating a liquid crystal display using the same includes a liquid crystal forming line dropping liquid crystals on the first substrate, a sealant forming line forming the sealant on the second substrate, and a bonding and hardening line bonding the two substrates to each other and hardening the sealant, printing a sealant, bonding the substrates each other, and hardening the sealant and an inspection process line of cutting the bonded substrates into panel units and grinding and inspecting the unit panels. The present invention includes the processes of dropping LC on a first substrate using a dispenser, forming a main UV hardening sealant on a second substrate, bonding the first and second substrates to each other in a vacuum state, UV hardening the main UV hardening sealant, cutting the bonded substrates into cell units, grinding the cut substrates, and finally inspecting the grinded substrates.
Abstract:
An LCD device and a method of manufacturing the same are disclosed, which prevents a liquid crystal from being filled imperfectly or excessively in an active region, thereby obtaining a uniform cell gap and improving picture quality characteristics. The LCD device includes a lower substrate and an upper substrate, a UV sealant between the lower and upper substrates, the UV sealant having a portion for controlling a liquid crystal flow at four corner regions, and a liquid crystal layer between the lower and upper substrates.
Abstract:
An LCD device and a method of manufacturing the same are disclosed, which prevents a liquid crystal from being filled imperfectly or excessively in an active region, thereby obtaining a uniform cell gap and improving picture quality characteristics. The LCD device includes a lower substrate and an upper substrate, a UV sealant between the lower and upper substrates, the UV sealant having a portion for controlling a liquid crystal flow at four corner regions, and a liquid crystal layer between the lower and upper substrates.
Abstract:
A liquid crystal injecting/sealing apparatus for injecting a liquid crystal into a liquid crystal display panel and sealing it. In the apparatus, an elevator is installed at the end of the injecting apparatus to convey the liquid crystal display panel from the injecting apparatus into the sealing apparatus. A residual liquid crystal remover removes a contaminated liquid crystal at the periphery of the liquid crystal injection hole. A sealer seals the liquid crystal injection hole with a sealant. An ultraviolet irradiating unit hardens the sealant.