Spam detector with challenges
    2.
    发明授权
    Spam detector with challenges 有权
    垃圾邮件检测器带有挑战

    公开(公告)号:US08046832B2

    公开(公告)日:2011-10-25

    申请号:US10180565

    申请日:2002-06-26

    IPC分类号: G08B23/00

    CPC分类号: G06Q10/107 H04L51/12

    摘要: A system and method facilitating detection of unsolicited e-mail message(s) with challenges is provided. The invention includes an e-mail component and a challenge component. The system can receive e-mail message(s) and associated probabilities that the e-mail message(s) are spam. Based, at least in part, upon the associated probability, the system can send a challenge to a sender of an e-mail message. The challenge can be an embedded code, computational challenge, human challenge and/or micropayment request. Based, at least in part, upon a response to the challenge (or lack of response), the challenge component can modify the associated probability and/or delete the e-mail message.

    摘要翻译: 提供了一种有助于检测未经请求的电子邮件消息的系统和方法。 本发明包括电子邮件组件和挑战组件。 该系统可以接收电子邮件消息和电子邮件消息是垃圾邮件的关联概率。 至少部分地基于相关联的概率,系统可以向电子邮件消息的发送者发送挑战。 挑战可能是嵌入式代码,计算挑战,人为挑战和/或微支付请求。 至少部分地基于对挑战的响应(或缺乏响应),挑战组件可以修改相关联的概率和/或删除电子邮件消息。

    Training machine learning by sequential conditional generalized iterative scaling
    4.
    发明授权
    Training machine learning by sequential conditional generalized iterative scaling 有权
    训练机器学习通过顺序条件广义迭代缩放

    公开(公告)号:US07266492B2

    公开(公告)日:2007-09-04

    申请号:US11465102

    申请日:2006-08-16

    IPC分类号: G06F17/28

    CPC分类号: G06N99/005 G10L15/063

    摘要: A system and method facilitating training machine learning systems utilizing sequential conditional generalized iterative scaling is provided. The invention includes an expected value update component that modifies an expected value based, at least in part, upon a feature function of an input vector and an output value, a sum of lambda variable and a normalization variable. The invention further includes an error calculator that calculates an error based, at least in part, upon the expected value and an observed value. The invention also includes a parameter update component that modifies a trainable parameter based, at least in part, upon the error. A variable update component that updates at least one of the sum of lambda variable and the normalization variable based, at least in part, upon the error is also provided.

    摘要翻译: 提供了一种利用连续条件广义迭代缩放来促进训练机器学习系统的系统和方法。 本发明包括至少部分地基于输入向量的特征函数和输出值,λ变量和归一化变量的和来修改期望值的期望值更新组件。 本发明还包括误差计算器,该误差计算器至少部分地基于期望值和观测值来计算误差。 本发明还包括至少部分地基于错误来修改可训练参数的参数更新组件。 还提供了至少部分地基于错误来更新λ变量和归一化变量之和中的至少一个的可变更新组件。

    Training machine learning by sequential conditional generalized iterative scaling
    5.
    发明授权
    Training machine learning by sequential conditional generalized iterative scaling 有权
    训练机器学习通过顺序条件广义迭代缩放

    公开(公告)号:US07107207B2

    公开(公告)日:2006-09-12

    申请号:US10175430

    申请日:2002-06-19

    IPC分类号: G06F17/28

    CPC分类号: G06N99/005 G10L15/063

    摘要: A system and method facilitating training machine learning systems utilizing sequential conditional generalized iterative scaling is provided. The invention includes an expected value update component that modifies an expected value based, at least in part, upon a feature function of an input vector and an output value, a sum of lambda variable and a normalization variable. The invention further includes an error calculator that calculates an error based, at least in part, upon the expected value and an observed value. The invention also includes a parameter update component that modifies a trainable parameter based, at least in part, upon the error. A variable update component that updates at least one of the sum of lambda variable and the normalization variable based, at least in part, upon the error is also provided.

    摘要翻译: 提供了一种利用连续条件广义迭代缩放来促进训练机器学习系统的系统和方法。 本发明包括至少部分地基于输入向量的特征函数和输出值,λ变量和归一化变量的和来修改期望值的期望值更新组件。 本发明还包括误差计算器,该误差计算器至少部分地基于期望值和观测值来计算误差。 本发明还包括至少部分地基于错误来修改可训练参数的参数更新组件。 还提供了至少部分地基于错误来更新λ变量和归一化变量之和中的至少一个的可变更新组件。