摘要:
Described is a technology by which phishing-related data sources are processed into aggregated data and a given site evaluated the aggregated data using a predictive model to automatically determine whether the given site is likely to be a phishing site. The predictive model may be built using machine learning based on training data, e.g., including known phishing sites and/or known non-phishing sites. To determine whether an object corresponding to a site is likely a phishing-related object are described, various criteria are evaluated, including one or more features of the object when evaluated. The determination is output in some way, e.g., made available to a reputation service, used to block access to a site or warn a user before allowing access, and/or used to assist a hand grader in being more efficient in evaluating sites.
摘要:
A system and method facilitating detection of unsolicited e-mail message(s) with challenges is provided. The invention includes an e-mail component and a challenge component. The system can receive e-mail message(s) and associated probabilities that the e-mail message(s) are spam. Based, at least in part, upon the associated probability, the system can send a challenge to a sender of an e-mail message. The challenge can be an embedded code, computational challenge, human challenge and/or micropayment request. Based, at least in part, upon a response to the challenge (or lack of response), the challenge component can modify the associated probability and/or delete the e-mail message.
摘要:
A method disclosed herein includes acts of receiving code at a Just-in-Time compiler executing in an application on a computing device and compiling the code to generate machine code and causing the machine code to be placed on at least one page that is accessible by at least one processor on the computing device, wherein the Just-in-Time compiler compiles the code utilizing at least one technique for preventing a Just-in-Time spraying attack.
摘要:
A system and method facilitating training machine learning systems utilizing sequential conditional generalized iterative scaling is provided. The invention includes an expected value update component that modifies an expected value based, at least in part, upon a feature function of an input vector and an output value, a sum of lambda variable and a normalization variable. The invention further includes an error calculator that calculates an error based, at least in part, upon the expected value and an observed value. The invention also includes a parameter update component that modifies a trainable parameter based, at least in part, upon the error. A variable update component that updates at least one of the sum of lambda variable and the normalization variable based, at least in part, upon the error is also provided.
摘要:
A system and method facilitating training machine learning systems utilizing sequential conditional generalized iterative scaling is provided. The invention includes an expected value update component that modifies an expected value based, at least in part, upon a feature function of an input vector and an output value, a sum of lambda variable and a normalization variable. The invention further includes an error calculator that calculates an error based, at least in part, upon the expected value and an observed value. The invention also includes a parameter update component that modifies a trainable parameter based, at least in part, upon the error. A variable update component that updates at least one of the sum of lambda variable and the normalization variable based, at least in part, upon the error is also provided.