Abstract:
A radiometer that incorporates multiple UV bandwidth sensors, defined in nanometers, and includes connectors for inserting a cable that is used to connect to another sensor, or to a data collection module (DCM) in a multidrop, or daisy-chain arrangement. Each sensor can be positioned at any point on a three-dimensional work piece, and will receive UV energy at the aperture having an optical component. The collected energy is directed to a detector in the sensor. A processor in the body of the sensor then computes the amount of UV radiation based on signals from the detector. This information is transferred to and stored in a data collection module to which the sensor string is connected. Data stored in the DCM can then be transferred to a computer for display purposes. The sensors and DCM can be tethered to the computer for real-time measurement readings when adjusting the UV lamps.
Abstract:
An apparatus that measures light transmitted through a fluid sample and provides a direct readout of such a measurement by electronically converting light transmitted to an electrical signal that is displayed on a readout device; the apparatus contains a power source, a light source, a photodetector, a sample holder for samples that forms a cell; the improvements used in the apparatus are as follows:(a) a color interference filter positioned between the sample and the photodetector which filters out unwanted bands of color,(b) a converter which electronically converts a current signal from the photodetector to a voltage signal,(c) a logarithmic response circuit that changes the voltage signal to a logarithmic signal proportional to the logarithm of the voltage signal; and(d) a digital voltmeter that converts the logarithm signal to a signal that is displayed on a readout device.
Abstract:
An ultraviolet (UV) radiometer includes as one component a data collection unit which is sufficiently small that it can be placed in UV curing applications which have normally been inaccessible as another component a data reader into which the data collection unit is inserted for displaying and/or processing the actual data collected by the data collection unit during a process run. Because of its small size, the data collection unit makes it possible to obtain true process control in applications that could not previously be monitored. After making a dosage measurement, the data collection unit is inserted into the data reader to display the actual data collected during a UV curing run. After reading the data in the data collection unit, the data reader clears the previously stored data and resets the unit to take a new dosage reading.
Abstract:
An ultraviolet source (14) directs selected ultraviolet radiation onto a thin film (10) to excite it. The thin film fluoresces, either naturally or as a result of adding fluorescing material. The amount of light fluoresced is proportional to the film thickness. An optical filter (16) selectively transmits fluoresced wavelengths, excluding exciting wavelengths. A photodetector (18) converts the light to an electrical signal which is processed by signal processing circuits (20) and displayed on a readout (26). The output is compensated for variations in the intensity of the exciting ultraviolet radiation by generating a second electrical signal (13', 18') proportional to the intensity of the exciting radiation and dividing the first electrical signal by a function of said second electrical signal. The compensated output is then calibrated to assure precision and accurate measurements.Various materials may be selectively measured, individually in the presence of others by choosing appropriate excitation and emission wavelengths. The amount of fluoresced light is linear with respect to the amount of material present as long as the layer is quite thin. As the layer thickness increases, the amount of light to thickness relationship becomes non-linear.
Abstract:
A radiometer that incorporates multiple UV bandwidth sensors, defined in nanometers, and includes connectors for inserting a cable that is used to connect to another sensor, or to a data collection module (DCM) in a multidrop, or daisy-chain arrangement. Each sensor can be positioned at any point on a three-dimensional work piece, and will receive UV energy at the aperture having an optical component. The collected energy is directed to a detector in the sensor. A processor in the body of the sensor then computes the amount of UV radiation based on signals from the detector. This information is transferred to and stored in a data collection module to which the sensor string is connected. Data stored in the DCM can then be transferred to a computer for display purposes. The sensors and DCM can be tethered to the computer for real-time measurement readings when adjusting the UV lamps.
Abstract:
An instrument for use with a film containing a printed circuit layout. The instrument measures the area which is transparent to electromagnetic radiation of a characteristic wavelength so that the open area of the film and the average open area can be calculated and displayed. A source oriented in a direction perpendicular to the transport path emits radiation of the characteristic wavelength across a width of the film. A plurality of detecting devices responsive to the characteristic wavelength are arranged in a linear array in optical coordination with the source. Each detecting device detects radiation transmitted through an incremental area of the film and produces an output signal representative thereof. A detector circuit connected to receive the output signals repeatedly and sequentially provides digital area signals proportional to the amount of clear area within a respective incremental area of film. A microcomputer receives the area signals and computes the total clear area. A digital display provides a visual indication of the total clear area.
Abstract:
A detector receives energy pulses and a lossy integration circuit generates a lossy integration that, for each pulse, increases over the pulse duration to a maximum value and then decays. The lossy integration is sampled, with a sampling rate and decay rate such that the sample is within a given acceptable error of the maximum value. The sample represents the pulse total energy, within the given acceptable error. An optional circuit and processing function calculates a total accumulated energy over a plurality of pulses.
Abstract:
A detector receives energy pulses and a lossy integration circuit generates a lossy integration that, for each pulse, increases over the pulse duration to a maximum value and then decays. The lossy integration is sampled, with a sampling rate and decay rate such that the sample is within a given acceptable error of the maximum value. The sample represents the pulse total energy, within the given acceptable error. An optional circuit and processing function calculates a total accumulated energy over a plurality of pulses.
Abstract:
A probe style radiometer includes a generally rectangular cross-sectional body and a probe having a square cross-section. The probe is preferably a hollow rod having a tip equipped with a UV-collecting aperture and a mirror. The mirror reflects UV light entering the aperture down the length of the rod to a detector in the body. A processor in the body then computes the amount of UV radiation based on signals from the detector. The amount may then be provided on a display integrated into the body. A ground quartz or glass window may be provided at the tip to seal the rod from exterior contamination and to diffuse the incoming UV radiation in a manner that will give the probe a near-cosine angular response. Filters within the radiometer body then filter this diffused radiation to the spectral region of interest. Preferably, the radiometer is battery powered and includes switches on the body to allow a user to control the mode of operation. To prevent electrical shock, the metal rod of the probe may contain an electrically non-conductive outer coating.