摘要:
Mechanisms for reducing the idle time of a computing device due to delays in transmitting/receiving acknowledgement packets are provided. A first data amount corresponding to a window size for a communication connection is determined. A second data amount, in excess of the first data amount, which may be transmitted with the first data amount, is calculated. The first and second data amounts are then transmitted from the sender to the receiver. The first data amount is provided to the receiver in a receive buffer of the receiver. The second data amount is maintained in a switch port buffer of a switch port without being provided to the receive buffer. The second data amount is transmitted from the switch port buffer to the receive buffer in response to the switch port detecting an acknowledgement packet from the receiver.
摘要:
Mechanisms for reducing the idle time of a computing device due to delays in transmitting/receiving acknowledgement packets are provided. A first data amount corresponding to a window size for a communication connection is determined. A second data amount, in excess of the first data amount, which may be transmitted with the first data amount, is calculated. The first and second data amounts are then transmitted from the sender to the receiver. The first data amount is provided to the receiver in a receive buffer of the receiver. The second data amount is maintained in a switch port buffer of a switch port without being provided to the receive buffer. The second data amount is transmitted from the switch port buffer to the receive buffer in response to the switch port detecting an acknowledgement packet from the receiver.
摘要:
Expediting adapter failover may minimize network downtime and preserve network performance. Embodiments may comprise copying a primary adapter memory of a failing primary adapter to a standby adapter memory of a standby adapter. Copying the memory may expedite TCP/IP offload adapter failover by maintaining TCP/IP stack and connection information. In several embodiments, Copy Logic may copy primary adapter memory to standby adapter memory. In some embodiments, Detect Logic may monitor primary adapter viability and may initiate failover. In additional embodiments, Assess Logic may assess whether the IO bus is operative permitting Direct Logic to copy adapter memory via, e.g., DMA. In other embodiments, Packet Logic may fragment primary adapter memory into network packets sent through the network to the standby adapter where Unpack Logic may unpack them into memory.
摘要:
A method, system and computer program product for eliminating the latency in searching for contiguous memory space by an IO DMA request of a device driver. Three new application programming interfaces (APIs) are provided within the operating system (OS) code that allows the device driver(s) to (1) pre-request and pre-allocate the IO DMA address range from the OS during the IPL and maintain control of the address, (2) map a system (virtual/physical) address range to a specific pre-allocated IO DMA address range, and (3) free the pre-allocated IO DMA address space back to the kernel when the space is no longer required. Utilizing these APIs enables advanced IO DMA address mapping techniques maintained by the device drivers, and the assigned/allocated IO DMA address space is no longer fragmented, and the latency of completing the IO DMA mapping is substantially reduced/eliminated.
摘要:
A method and system for substantially avoiding loss of data and enabling continuing connection to the application during an MTU size changing operation in an active network computing device. Logic is added to the device driver, which logic provides several enhancements to the MTU size changing operation/process. Among these enhancements are: (1) logic for temporarily pausing the data coming in from the linked partner while changing the MTU size; (2) logic for returning a “device busy” status to higher-protocol transmit requests during the MTU size changing process. This second logic prevents the application from issuing new requests until the busy signal is removed; and (3) logic for enabling resumption of both flows when the MTU size change is completed. With this new logic, the device driver/adapter does not have any transmit and receive packets to process for a short period of time, while the MTU size change is ongoing.
摘要:
A method and system for substantially avoiding loss of data and enabling continuing connection to the application during an MTU size changing operation in an active network computing device. Logic is added to the device driver, which logic provides several enhancements to the MTU size changing operation/process. Among these enhancements are: (1) logic for temporarily pausing the data coming in from the linked partner while changing the MTU size; (2) logic for returning a “device busy” status to higher-protocol transmit requests during the MTU size changing process. This second logic prevents the application from issuing new requests until the busy signal is removed; and (3) logic for enabling resumption of both flows when the MTU size change is completed. With this new logic, the device driver/adapter does not have any transmit and receive packets to process for a short period of time, while the MTU size change is ongoing.
摘要:
A method, medium and implementing processing system are provided in which the Operating System (OS) driver is divided into two parts, viz. an upper level OS driver and a lower level OS driver. The lower level OS driver sets up the adapter hardware and any adapter hardware work-around. The upper level OS driver is interfaced to the OS communication stack and each can be compiled separately. The upper OS driver is compiled and shipped with the OS to make sure it is compatible with the OS communication stack. The lower OS driver, in an exemplary embodiment, is compiled and stored in an adapter flash memory. The OS dynamically combines the upper and lower OS drivers together during the load time.
摘要:
A method and system for substantially avoiding loss of data and enabling continuing connection to the application during an MTU size changing operation in an active network computing device. Logic is added to the device driver, which logic provides several enhancements to the MTU size changing operation/process. Among these enhancements are: (1) logic for temporarily pausing the data coming in from the linked partner while changing the MTU size; (2) logic for returning a “device busy” status to higher-protocol transmit requests during the MTU size changing process. This second logic prevents the application from issuing new requests until the busy signal is removed; and (3) logic for enabling resumption of both flows when the MTU size change is completed. With this new logic, the device driver/adapter does not have any transmit and receive packets to process for a short period of time, while the MTU size change is ongoing.
摘要:
A method, medium and implementing processing system are provided in which the Operating System (OS) driver is divided into two parts, viz. an upper level OS driver and a lower level OS driver. The lower level OS driver sets up the adapter hardware and any adapter hardware work-around. The upper level OS driver is interfaced to the OS communication stack and each can be compiled separately. The upper OS driver is compiled and shipped with the OS to make sure it is compatible with the OS communication stack. The lower OS driver, in an exemplary embodiment, is compiled and stored in an adapter flash memory. The OS dynamically combines the upper and lower OS drivers together during the load time.
摘要:
A method and system for substantially avoiding loss of data and enabling continuing connection to the application during an MTU size changing operation in an active network computing device. Logic is added to the device driver, which logic provides several enhancements to the MTU size changing operation/process. Among these enhancements are: (1) logic for temporarily pausing the data coming in from the linked partner while changing the MTU size; (2) logic for returning a “device busy” status to higher-protocol transmit requests during the MTU size changing process. This second logic prevents the application from issuing new requests until the busy signal is removed; and (3) logic for enabling resumption of both flows when the MTU size change is completed. With this new logic, the device driver/adapter does not have any transmit and receive packets to process for a short period of time, while the MTU size change is ongoing.