Customer Feedback Analyzer
    1.
    发明申请
    Customer Feedback Analyzer 有权
    客户反馈分析仪

    公开(公告)号:US20150088608A1

    公开(公告)日:2015-03-26

    申请号:US14037968

    申请日:2013-09-26

    CPC classification number: G06Q30/00 G06Q30/01 G06Q30/02 G06Q50/01

    Abstract: A method and system for analyzing customer feedback is provided. The method includes accessing a keyword and word mapping database and receiving consumer feedback data associated with a product or service. The consumer feedback data includes feedback data groups. Each group is divided into segments based on word analysis. Each segment is analyzed with respect to the keyword and thesaurus database. A score is generated for each segment and a composite score is generated for each feedback data group. Each composite score is stored.

    Abstract translation: 提供了一种用于分析客户反馈的方法和系统。 该方法包括访问关键字和词映射数据库并接收与产品或服务相关联的消费者反馈数据。 消费者反馈数据包括反馈数据组。 基于单词分析,每组分为几段。 关于关键字和词库数据库分析每个细分。 为每个分段生成分数,并为每个反馈数据组生成综合分数。 存储每个综合得分。

    DATA CLUSTERING AND USER MODELING FOR NEXT-BEST-ACTION DECISIONS
    2.
    发明申请
    DATA CLUSTERING AND USER MODELING FOR NEXT-BEST-ACTION DECISIONS 有权
    数据聚类和用户建模为下一个最佳行动决策

    公开(公告)号:US20140344270A1

    公开(公告)日:2014-11-20

    申请号:US13895947

    申请日:2013-05-16

    Abstract: Embodiments herein provide data clustering and user modeling for next-best-action decisions. Specifically, a modeling tool is configured to: receive indicators within unstructured social data from a plurality of users; analyze the unstructured social data of each of the plurality of users to assign a set of feature vectors to each of the plurality of users, each feature vector corresponding to one or more personality characteristics of each of the plurality of users; and analyze the feature vectors to identify two or more users from the plurality of users sharing a set of similar feature vectors. The modeling tool is further configured to: group the two or more users from the plurality of users sharing the set of similar feature vectors to form a cluster; identify attributes of the cluster; and input the attributes of the cluster into a predictive model to determine an offer corresponding to the cluster.

    Abstract translation: 本文的实施例提供用于下一最佳动作决定的数据聚类和用户建模。 具体地,建模工具被配置为:从多个用户接收非结构化社交数据内的指标; 分析所述多个用户中的每一个的非结构化社交数据,以向所述多个用户中的每一个分配一组特征向量,每个特征向量对应于所述多个用户中的每一个的一个或多个个性特征; 并且分析特征向量以识别来自共享一组相似特征向量的多个用户中的两个或更多个用户。 该建模工具还被配置为:从共享该组相似特征向量的多个用户中分组两个或多个用户以形成群集; 识别集群的属性; 并将集群的属性输入到预测模型中以确定与集群相对应的报价。

Patent Agency Ranking