Abstract:
Improved methods for performing burn-in of electronic components, such as integrated circuits (ICs) with on-board thermal sense circuits, are used to obtain a higher bin split. According to one embodiment, a thermal set-point is loaded into each IC. While the ICs are maintained at a constant elevated temperature, the burn-in system checks each IC to determine whether the set-point has been exceeded. If so, it characterizes the IC by that set-point; if not, it decrements the set-point and checks again. The method continues until all ICs have been characterized to a specific set-point. As a result of the method, a junction temperature is obtained for each IC. In addition, a real-time estimate of the burn-in time for each IC is obtained, so that burn-in time can be adjusted to maximize burn-in throughput. Apparatus for implementing improved IC burn-in is also described.
Abstract:
According to one aspect of the invention a method of constructing an electronic assembly is provided. The electronic assembly is constructed from a semiconductor package including a package substrate and a semiconductor chip mounted to the package substrate, a thermally conductive member, and a substance including indium. The method comprises securing the thermally conductive member and the semiconductor package in a selected orientation relative to one another with the thermally conductive member on a side of the semiconductor chip opposing the package substrate and with the substance located between the semiconductor chip and at least a portion of the thermally conductive member. The substance is thermally coupled to the semiconductor chip on one side and thermally coupled to the portion of the thermally conductive member on an opposing side.