Efficient buffer utilization for network data units

    公开(公告)号:US11949601B1

    公开(公告)日:2024-04-02

    申请号:US17942676

    申请日:2022-09-12

    申请人: Innovium, Inc.

    摘要: Approaches, techniques, and mechanisms are disclosed for efficiently buffering data units within a network device. A traffic manager or other network device component receives Transport Data Units (“TDUs”), which are sub-portions of Protocol Data Units (“PDUs”). Rather than buffer an entire TDU together, the component divides the TDU into multiple Storage Data Units (“SDUs”) that can fit in SDU buffer entries within physical memory banks. A TDU-to-SDU Mapping (“TSM”) memory stores TSM lists that indicate which SDU entries store SDUs for a given TDU. Physical memory banks in which the SDUs are stored may be grouped together into logical SDU banks that are accessed together as if a single bank. The TSM memory may include a number of distinct TSM banks, with each logical SDU bank having a corresponding TSM bank. Techniques for maintaining inter-packet and intra-packet linking data compatible with such buffers are also disclosed.

    Efficient scheduling using adaptive packing mechanism for network apparatuses

    公开(公告)号:US11805066B1

    公开(公告)日:2023-10-31

    申请号:US17141130

    申请日:2021-01-04

    申请人: Innovium, Inc.

    摘要: A scheduler in a network device serves ports with data units from a plurality of queues. The scheduler implements a scheduling algorithm that is normally constrained to releasing data to a port no more frequently than at a default maximum service rate. However, when data units smaller than a certain size are at the heads of one or more data unit queues assigned to a port, the scheduler may temporarily increase the maximum service rate of that port. The increased service rate permits fuller realization of a port's maximum bandwidth when handling smaller data units. In some embodiments, increasing the service rate involves dequeuing more than one small data unit at a time, with the extra data units temporarily stored in a port FIFO. The scheduler adds a pseudo-port to its scheduling sequence to schedule release of data from the port FIFO, with otherwise minimal impact on the scheduling logic.

    Efficient buffer utilization for network data units

    公开(公告)号:US10938739B1

    公开(公告)日:2021-03-02

    申请号:US16186349

    申请日:2018-11-09

    申请人: Innovium, Inc.

    摘要: Approaches, techniques, and mechanisms are disclosed for efficiently buffering data units within a network device. A traffic manager or other network device component receives Transport Data Units (“TDUs”), which are sub-portions of Protocol Data Units (“PDUs”). Rather than buffer an entire TDU together, the component divides the TDU into multiple Storage Data Units (“SDUs”) that can fit in SDU buffer entries within physical memory banks. A TDU-to-SDU Mapping (“TSM”) memory stores TSM lists that indicate which SDU entries store SDUs for a given TDU. Physical memory banks in which the SDUs are stored may be grouped together into logical SDU banks that are accessed together as if a single bank. The TSM memory may include a number of distinct TSM banks, with each logical SDU bank having a corresponding TSM bank. Techniques for maintaining inter-packet and intra-packet linking data compatible with such buffers are also disclosed.

    Efficient buffer utilization for network data units

    公开(公告)号:US11470016B1

    公开(公告)日:2022-10-11

    申请号:US16924340

    申请日:2020-07-09

    申请人: Innovium, Inc.

    摘要: Approaches, techniques, and mechanisms are disclosed for efficiently buffering data units within a network device. A traffic manager or other network device component receives Transport Data Units (“TDUs”), which are sub-portions of Protocol Data Units (“PDUs”). Rather than buffer an entire TDU together, the component divides the TDU into multiple Storage Data Units (“SDUs”) that can fit in SDU buffer entries within physical memory banks. A TDU-to-SDU Mapping (“TSM”) memory stores TSM lists that indicate which SDU entries store SDUs for a given TDU. Physical memory banks in which the SDUs are stored may be grouped together into logical SDU banks that are accessed together as if a single bank. The TSM memory may include a number of distinct TSM banks, with each logical SDU bank having a corresponding TSM bank. Techniques for maintaining inter-packet and intra-packet linking data compatible with such buffers are also disclosed.