Abstract:
A monitoring system is provided for monitoring a user's premises. The system comprises a monitoring device that comprises at least one sensor configured to enable determining occurrence of one or more pre-defined events, wherein the monitoring device is characterized in that it is configured to automatically guide itself to move within the user's premises, and in addition the system comprises a docking station for the monitoring device.
Abstract:
A system and a method on an integrated circuit are provided herein. The system may include: a plurality of defined data processing dedicated areas to perform computational functions relating to a corresponding plurality of natural user interface features, to obtain the plurality of user interface features based on scene features detected by a plurality of sensors within a defined period of time; a central processing unit configured to carry out software instructions to support the computational functions of the dedicated areas; and at least one defined area for synchronized data management, to receive signals corresponding to detected scene features from the plurality of sensors and to route the signals to suitable dedicated areas of the plurality of dedicated areas to provide real-time acquiring of user interface features.
Abstract:
A natural user interface (NUI) computer processor is provided herein. The NUI computer processor may include: at least one computer processing module; and a plurality of sensors, connected with direct, high bandwidth connectors to the at least one computer processing module, wherein the computer processing module is configured to support a full extent of processing power required for simultaneous multi-modal high resolution information handling gathered by said sensors, wherein the computer processing module and the high bandwidth connectors are cooperatively configured to eliminate any non-vital delays, to reduce latency between human user actions captured by said sensors and response by the NUI computer processor.
Abstract:
A natural user interface system and a method for natural user interface, the system may include an integrated circuit dedicated for natural user interface processing, the integrated circuit may include: a plurality of defined data processing dedicated areas to perform computational functions relating to a corresponding plurality of natural user interface features, to obtain the plurality of user interface features based on scene features detected by a plurality of sensors within a defined period of time; a central processing unit configured to carry out software instructions to support the computational functions of the dedicated areas; and at least one defined area for synchronized data management, to receive signals corresponding to detected scene features from the plurality of sensors and to route the signals to suitable dedicated areas of the plurality of dedicated areas to provide real-time acquiring of user interface features.