Abstract:
A cement mix for preparation of a magnesium silico-phosphate cement (MSPC) with an altered hardening rate is provided. The cement mix comprises on the order of 1% of an [MF6]n− salt or acid. Upon addition of water, the mix produces a final set cement that has similar physical properties to those of a cement prepared from a mix lacking the additive, but with a significantly altered setting time. In some embodiments of the invention, the additive is provided in the form of a coating for the MgO component of the mix. In preferred embodiments, H2TiF6, Na2TiF6 and/or K2TiF6 are used as retarders, while K3AlF6 is used as an accelerant. Other embodiments use M′nMF6 compounds wherein M′ is an alkali metal, an alkaline earth metal, or H, and M is chosen from inter alia Ti (n=2), Zr (n=2), P (n=1), Al (n=3), and Sb (n=1).
Abstract:
A cement mix for preparation of a magnesium silico-phosphate cement (MSPC) with an altered hardening rate is provided. The cement mix comprises on the order of 1% of an [MF6]n− salt or acid. Upon addition of water, the mix produces a final set cement that has similar physical properties to those of a cement prepared from a mix lacking the additive, but with a significantly altered setting time. In some embodiments of the invention, the additive is provided in the form of a coating for the MgO component of the mix. In preferred embodiments, H2TiF6, Na2TiF6 and/or K2TiF6 are used as retarders, while K3AlF6 is used as an accelerant. Other embodiments use M′nMF6 compounds wherein M′ is an alkali metal, an alkaline earth metal, or H, and M is chosen from inter alia Ti (n=2), Zr (n=2), P (n=1), Al (n=3), and Sb (n=1).