Mechanical switch dimming and speed regulation control system

    公开(公告)号:US11744000B2

    公开(公告)日:2023-08-29

    申请号:US17707989

    申请日:2022-03-30

    发明人: Hui Li Long Zhao

    IPC分类号: H05B47/26 H05B47/105

    CPC分类号: H05B47/26 H05B47/105

    摘要: A mechanical switch dimming and speed regulation control system includes a double-contact mechanical switch including at least one alternating current live wire input end, and at least one group of normally closed contact and normally open contact mutually short-circuited with each other, a dimming and speed regulation controller including a signal collector and a dimming and speed regulation control circuit, and a controlled device, outputs of the normally closed and open contacts loop-connected with the dimming and speed regulation controller, the dimming and speed regulation controller loop-connected with the controlled device, the signal collector electrically connected with an output loop of the double-contact mechanical switch and the dimming and speed regulation control circuit, respectively; the dimming and speed regulation control circuit loop-connected with the controlled device. The present disclosure implements high-power dimming and speed regulation control of a single live wire by using the double-contact mechanical switch, and overcomes problems of power limitation of a conventional dimming and speed regulation switch and difficulty for an intelligent switch to implement dimming and speed regulation of the single live wire.

    Virtual and parallel power extraction method by using time division

    公开(公告)号:US11903110B2

    公开(公告)日:2024-02-13

    申请号:US17695841

    申请日:2022-03-16

    摘要: A virtual and parallel power extraction method by using time division, comprising an alternating current load (1), a load end time-division power extraction control device (2), a switch end time-division power extraction control device (3), and a switch end power supply load (4). The alternating current load (1) is connected in parallel with the load end time-division power extraction control device (2); the switch end time-division power extraction control device (3) is connected in parallel with the switch end power supply load (4); a combination body formed by connecting the alternating current load (1) with the load end time-division power extraction control device (2) in parallel and the combination body formed by connecting the switch end time-division power extraction control device (3) with the switch end power supply load (4) in parallel are together connected in series in an alternating current circuit. The present invention provides an efficient power extraction method between an electronic switch and a connected load on the premise of having no a neutral line, and particularly solves the problem that the electronic switch is falsely turned off or incompletely turned off for a low-power LED lamp.

    VIRTUAL AND PARALLEL POWER EXTRACTION METHOD BY USING TIME DIVISION

    公开(公告)号:US20220210888A1

    公开(公告)日:2022-06-30

    申请号:US17695841

    申请日:2022-03-16

    摘要: A virtual and parallel power extraction method by using time division, comprising an alternating current load (1), a load end time-division power extraction control device (2), a switch end time-division power extraction control device (3), and a switch end power supply load (4). The alternating current load (1) is connected in parallel with the load end time-division power extraction control device (2); the switch end time-division power extraction control device (3) is connected in parallel with the switch end power supply load (4); a combination body formed by connecting the alternating current load (1) with the load end time-division power extraction control device (2) in parallel and the combination body formed by connecting the switch end time-division power extraction control device (3) with the switch end power supply load (4) in parallel are together connected in series in an alternating current circuit. The present invention provides an efficient power extraction method between an electronic switch and a connected load on the premise of having no a neutral line, and particularly solves the problem that the electronic switch is falsely turned off or incompletely turned off for a low-power LED lamp.