Abstract:
A clustering method for a point of interest and a related apparatus are provided. The clustering method for a point of interest includes: acquiring a locating point set of a user within a preset period; generating a stay point set according to the locating point set, where each stay point in the stay point set represents one hot area; calculating a confidence level of each stay point in the stay point set; obtaining a trusted stay point from the stay point set by means of screening according to the confidence level of each stay point in the stay point set; and clustering density-connected trusted stay points to form a point of interest. By using technical solutions provided in the present disclosure, reliability and reference value of a POI can be effectively improved.
Abstract:
A clustering method for a point of interest and a related apparatus are provided. The clustering method for a point of interest includes: acquiring a locating point set of a user within a preset period; generating a stay point set according to the locating point set, where each stay point in the stay point set represents one hot area; calculating a confidence level of each stay point in the stay point set; obtaining a trusted stay point from the stay point set by means of screening according to the confidence level of each stay point in the stay point set; and clustering density-connected trusted stay points to form a point of interest. By using technical solutions provided in the present disclosure, reliability and reference value of a POI can be effectively improved.