Abstract:
Embodiments of the present invention provide a die casting aluminum alloy, including the following components in percentage by mass: 11.0% to 14.0% of silicon; 0.1% to 0.9% of manganese; 0.1% to 1.0% of magnesium; 0.3% to 1.4% of iron; less than or equal to 0.2% of copper; and aluminum and inevitable impurities. The die casting aluminum alloy has good formability, heat conductivity, and corrosion resistance, and certain mechanical properties, which can avoid problems of a low yield of die-casting fittings, burn-in caused by severe heat emission of a product, corrosion in a coastal environment, assembly difficulties caused by insufficient mechanical properties, severe deformation in a wind load condition, and the like, so as to satisfy requirements of global delivery of complex communications products.
Abstract:
Embodiments of the present disclosure provide a die casting aluminum alloy, including constituents with the following mass percentages: silicon: 4.0% to 10.0%; magnesium: 0.2% to 1.0%; copper: ≤0.1%; manganese: ≤0.1%; zinc: ≤0.1%; ferrum: ≤1.3%; titanium: ≤0.2%; inevitable impurities: ≤0.15%; and the rest: aluminum. The die casting aluminum alloy has a high heat-conducting property, good formability, high corrosion resistance, and a good mechanical property. This can resolve a prior-art problem that forming and heat dissipation requirements of a communications product with a complex structure, high heat flux density, and large power cannot be met at the same time because it is difficult for a die casting aluminum alloy to have both a high heat-conducting property and good formability. The embodiments of the present disclosure further provide a production method of the die casting aluminum alloy and a communications product.
Abstract:
The present disclosure relates to telecommunication, and in particular, to a base station Radio Frequency (RF) duplexer, an RF module, and an RF system. A base station RF apparatus provided herein includes: an enclosure, an intermediate RF processing unit, and a duplexer. The enclosure is located on the duplexer; the intermediate RF processing unit is located inside a cavity enclosed by the enclosure and the duplexer, or on the duplexer; a duplexer cavity and a heat dissipation part exist on the surface of the duplexer; the opening of the duplexer cavity is opposite to or against the enclosure; the heat dissipation part is designed to dissipate heat of the intermediate RF processing unit; and the duplexer is integrally molded. The foregoing technical solution requires no external fasteners, reduces the time of production and assembly. In addition, waterproof design and shielding design are not required, and thus improves the reliability.