Abstract:
A method and an apparatus for generating a facial feature verification model. The method includes acquiring N input facial images, performing feature extraction on the N input facial images, to obtain an original feature representation of each facial image, and forming a face sample library, for samples of each person with an independent identity, obtaining an intrinsic representation of each group of face samples in at least two groups of face samples, training a training sample set of the intrinsic representation, to obtain a Bayesian model of the intrinsic representation, and obtaining a facial feature verification model according to a preset model mapping relationship and the Bayesian model of the intrinsic representation. In the method and apparatus for generating a facial feature verification model in the embodiments of the present disclosure, complexity is low and a calculation amount is small.
Abstract:
A method for verifying facial data and a corresponding system, which comprises retrieving a plurality of source-domain datasets from a first database and a target-domain dataset from a second database different from the first database; determining a latent subspace matching with target-domain dataset best and a posterior distribution for the determined latent subspace from the target-domain dataset and the source-domain datasets; determining information shared between the target-domain data and the source-domain datasets; and establishing a Multi-Task learning model from the posterior distribution P and the shared information M on the target-domain dataset and the source-domain datasets.
Abstract:
A method for verifying facial data and a corresponding system, which comprises retrieving a plurality of source-domain datasets from a first database and a target-domain dataset from a second database different from the first database; determining a latent subspace matching with target-domain dataset best and a posterior distribution for the determined latent subspace from the target-domain dataset and the source-domain datasets; determining information shared between the target-domain data and the source-domain datasets; and establishing a Multi-Task learning model from the posterior distribution P and the shared information M on the target-domain dataset and the source-domain datasets.
Abstract:
A method and an apparatus for generating a facial feature verification model. The method includes acquiring N input facial images, performing feature extraction on the N input facial images, to obtain an original feature representation of each facial image, and forming a face sample library, for samples of each person with an independent identity, obtaining an intrinsic representation of each group of face samples in at least two groups of face samples, training a training sample set of the intrinsic representation, to obtain a Bayesian model of the intrinsic representation, and obtaining a facial feature verification model according to a preset model mapping relationship and the Bayesian model of the intrinsic representation. In the method and apparatus for generating a facial feature verification model in the embodiments of the present disclosure, complexity is low and a calculation amount is small.