Abstract:
The present invention relates to an effective method of cold-forming a tee in tubing. The method includes the steps of forming a quadrilobal pilot hole in the tubing, securing the tubing, and forcing a rounded member from the interior of the tubing through the pilot hole to form the tee.
Abstract:
A fluid-handling device includes first and second mating plates. The first plate includes a central groove and a secondary groove surrounding the central groove. The second plate includes a complementary central groove that forms a main bore with the central groove of the first plate. A first seal disposed between the first and second plates seals between the main bore and the secondary groove. A second seal is disposed between the plates and surrounding the first seal. A vacuum communicates between the secondary groove to draw away fluid that may leak from the main bore past the first seal. The forces in the secondary groove due to the vacuum aid in securing the second plate to the first plate. A sensor can be tapped into the vacuum line to immediately sense whether any fluid has leaked past the first seal.
Abstract:
A modular fluid handling assembly includes a plurality of fluid handling units. Each fluid handling unit includes a fluid passage and associated port, a vacuum passage and associated port, a vacuum pressure source, and a containment seal. The fluid passage ports and vacuum passage ports of adjacent fluid handling units respectively communicate. The containment seal is disposed between adjacent fluid handling units and surrounds the communicating fluid passage ports and vacuum passage ports. The vacuum pressure source is in continuous communication with the vacuum passages of the fluid handling units, generates an urging force which aids in sealing adjacent fluid handling units together, and draws off any fluid that may leak from a fluid passage port. A sensor can be tapped into the vacuum line to sense whether any fluid has leaked from a fluid passage port.