Abstract:
An electrochemical capacitor comprising a nonaqueous electrolyte and a pair of polarizable electrodes, wherein carbon nanotubes are used as an electrode material for at least one of the positive electrode and the negative electrode, the carbon nanotubes have a specific surface area of at least 700 m2/g and contain semiconductive carbon nanotubes, and the electrode material exhibits a voltage dependency of differential capacity by electrochemical doping. The electrochemical capacitor solves the problems associated with activated carbon electrodes and, exploiting the excellent characteristics of carbon nanotubes, has increased capacitance and increased energy density, therefore realizing a reduced internal resistance and a prolonged service life.
Abstract:
The electrochemical capacitor of the invention comprises a nonaqueous electrolyte and a pair of polarizable electrodes, wherein carbon nanotubes are used as an electrode material for at least one of the positive electrode and the negative electrode, the carbon nanotubes have a specific surface area of at least 700 m2/g and contain semiconductive carbon nanotubes, and the electrode material exhibits a voltage dependency of differential capacity by electrochemical doping.The electrochemical capacitor solves the problems with activated carbon electrodes and, exploiting the excellent characteristics of carbon nanotubes, has further increased capacitance and increased energy density, therefore realizing a reduced internal resistance and a prolonged service life.