Abstract:
An inductive output tube (IOT) operates in a frequency range above 1000 MHz. An output window may be provided to separate a vacuum portion of the IOT from an atmospheric pressure portion of the IOT, the output window being surrounded by a cooling air manifold, the manifold including an air input port and a plurality of apertures permitting cooling air to move from the port, through the manifold and into the atmospheric pressure portion of the IOT. The output cavity may include a liquid coolant input port; a lower circular coolant channel coupled to receive liquid coolant from the liquid coolant input port; a vertical coolant channel coupled to receive liquid coolant from the lower circular coolant channel; an upper circular coolant channel coupled to receive liquid coolant from the vertical coolant channel; and a liquid coolant exhaust port coupled to receive liquid coolant from the upper circular coolant channel.
Abstract:
An inductive output tube (IOT) operates in a frequency range above 1000 MHz. An output window may be provided to separate a vacuum portion of the IOT from an atmospheric pressure portion of the IOT, the output window being surrounded by a cooling air manifold, the manifold including an air input port and a plurality of apertures permitting cooling air to move from the port, through the manifold and into the atmospheric pressure portion of the IOT. The output cavity may include a liquid coolant input port; a lower circular coolant channel coupled to receive liquid coolant from the liquid coolant input port; a vertical coolant channel coupled to receive liquid coolant from the lower circular coolant channel; an upper circular coolant channel coupled to receive liquid coolant from the vertical coolant channel; and a liquid coolant exhaust port coupled to receive liquid coolant from the upper circular coolant channel.
Abstract:
An Inductive Output Tube where, in order to permit the use of coaxial output cavities, the electron beam propagates in first approximation in a radial direction from the cathode. The electron beam is generated by an in first approximation cylindrical cathode, and gated by a consequently in first approximation cylindrical grid. The required drive power is provided by a coaxial input circuit. Depending on the level of a bias voltage, V.sub.g, applied between grid and cathode, the radial electron beam can optionally be operated in modulation classes A, AB, B or C. The modulated electron beam, accelerated by the beam voltage applied between cathode and anode, passes through an in first approximation cylindrical output gap where the modulation interacts with the electromagnetic field of a coaxial output circuit which is optionally connected to one or both ends of the gap between anode and collector. The spent beam is then collected by a radial collector. In this manner the desired use of coaxial cavities, operating in the suitable TE.sub.011 coaxial mode, is achieved.
Abstract:
An inductive output tube, e.g., a KLYSTRODE, or a klystron, has a substantially hollow electron beam traversing a resonant cavity excited to the TM.sub.0x0 mode, where x is greater than 1.
Abstract:
A microwave amplifier tube having a first and a second ring resonator of which the first serves as a driver resonator and the second serves as an output resonator. By means of a cathode system an electron beam rotating about the ring axis at the frequency of a control signal is generated. The electron beam is accelerated by a direct voltage and enters the second ring resonator which is tuned to the same frequency as the first resonator. The electron beam influences a high-frequency electromagnetic field in the second resonator and delivers a part of its energy to said second resonator. In order to facilitate equalization of the angular phase velocities in the two resonators, the ring resonators are provided above each other in the direction of the ring axis and the electron beam passes through the first and the second ring resonator parallel to the ring axis.