Abstract:
A thin film deposition apparatus that is suitable for production of large-sized substrates with fine patterns includes: an electrostatic chuck including a body that contacts a substrate that constitutes a deposition target and including a supporting surface supporting the substrate, an electrode installed in the body to generate an electrostatic force on the supporting surface, and a battery that is electrically connected to the electrode in the body; a plurality of chambers that are maintained in vacuum states; at least one thin film deposition assembly disposed in one of the plurality of chambers, separated by a predetermined distance from the substrate, and forming a thin film on the substrate supported by the electrostatic chuck; and a carrier moving the electrostatic chuck through the chambers.
Abstract:
A thin film deposition apparatus that includes a thin film deposition assembly incorporating: a deposition source that discharges a deposition material; a deposition source nozzle unit that is disposed at a side of the deposition source and includes a plurality of deposition source nozzles arranged in a first direction; a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and includes a plurality of patterning slits arranged in the first direction; and a barrier plate assembly including a plurality of barrier plates that are disposed between the deposition source nozzle unit and the patterning slit sheet in the first direction, and partition a space between the deposition source nozzle unit and the patterning slit sheet into a plurality of sub-deposition spaces, wherein each of the barrier plates is separate from the patterning slit sheet.
Abstract:
A thin film deposition apparatus that can be simply applied to produce large-sized display devices on a mass scale and that improves manufacturing yield. The thin film deposition apparatus includes a deposition source that discharges a deposition material; a deposition source nozzle unit disposed at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet disposed opposite to the deposition source nozzle unit and including a plurality of patterning slits arranged in a second direction that is perpendicular to the first direction. A deposition is performed while the substrate or the thin film deposition apparatus moves relative to each other in the first direction, and the deposition source, the deposition source nozzle unit, and the patterning slit sheet are formed integrally with each other.
Abstract:
A thin film deposition apparatus and an organic light-emitting display device by using the same. The thin film deposition apparatus includes an electrostatic chuck, an a plurality of chambers; at least one thin film deposition assembly; a carrier; a first power source plug; and a second power source plug. The electrostatic chuck includes a body having a supporting surface that contacts a substrate to support the substrate, wherein the substrate is a deposition target; an electrode embedded into the body and applying an electrostatic force to the supporting surface; and a plurality of power source holes formed to expose the electrode and formed at different locations on the body. The plurality of chambers are maintained in a vacuum state. The at least one thin film deposition assembly is located in at least one of the plurality of chambers, is separated from the substrate by a predetermined distance, and is used to form a thin film on the substrate supported by the electrostatic chuck. The carrier is used to move the electrostatic chuck to pass through the plurality of chambers. The first power source plug is installed to be attachable to and detachable from one of the power source holes in order to supply power to the electrode. The first power source plug is installed at an upstream of a path in which the electrostatic chuck is moved by the carrier. The second power source plug is installed to be attachable to and detachable from another of the power source holes in order to supply power to the electrode. The second power source plug is installed in the path to be downstream to the first power source plug with respect to the path.