摘要:
A thermally assisted magnetic recording head is disclosed with a light delivery waveguide circuit wherein a middle section of the primary waveguide (WG) has a curved portion. In one embodiment, the curved portion connects to a front WG section at the air bearing surface (ABS) and is offset in a cross-track direction from the laser diode to prevent stray light from heating metal parts proximate to the front section and undesirable writer protrusion. Optionally, a reflective blocker is inserted between the WG spot size converter and ABS. In a second embodiment, the laser diode, spot size converter, and front WG section are all aligned along a center slider plane. The curved portion has at least one 180° bend to bend light around the blocker that is between the spot size converter and WG front section. The blocker is tilted to prevent reflected light from returning to the laser diode.
摘要:
The present embodiments relate to a heat-assisted magnetic recording (HAMR) write head with a NFT bi-layer structure with a bottom taper, which can be applied to one or both layers of the two layers. A heat-assisted magnetic recording (HAMR) write head can include a main pole including a tip portion configured to interact with a magnetic recording medium at an air-bearing surface (ABS). The HAMR write head can further include a near-field transducer (NFT) that includes a dielectric waveguide, a plasmon generator (PG) layer, and a second layer. The second layer can include a thermo-mechanically stable material disposed adjacent to the PG layer. Further, the PG layer and the second layer can form a taper angle relative to the ABS ranging between 30 and 60 degrees.
摘要:
A plasmon generator (PG) is formed between a waveguide and main pole, and has a front portion (Au/Rh bilayer) wherein the upper Rh layer has a peg shape at an air bearing surface (ABS), and a tapered backside that is separated from a PG back portion by a dielectric spacer. The lower Au layer has a front side recessed from the ABS and curved sides self-aligned with the Rh layer sides. A key feature is that the back section of lower Au layer curved side forms a smaller angle with a plane aligned orthogonal to the ABS than a front section thereof thereby selectively enabling a deformation of the back end of the Au layer during a heat treatment to >300° C. at the wafer level. Accordingly, the front end of the lower Au layer is densified and provides an improved heat sink to improve reliability and area density capability (ADC).
摘要:
A near field transducer (NFT) is formed between a waveguide and main pole layer at an air bearing surface (ABS). The NFT includes a resonator body layer made of Au, for example, with a front side at a first plane that is recessed a first distance from the ABS and a back side that is at a second plane formed parallel to the ABS and first plane. The NFT also has a peg layer with a rectangular peg portion between the ABS and first plane, and a larger back portion between the first and second planes that overlays directly above the resonator body layer. The peg layer is preferably made of Rh to improve mechanical stability of the NFT without significantly degrading overall optical efficiency of the NFT. A blocker may be formed between the ABS and waveguide to prevent light not coupled to the NFT from reaching the ABS.
摘要:
The present embodiments relate to a perpendicular magnetic recording (PMR) write head with an STO element and configured to direct an electric current between elements of the write head. A first example embodiment describes a perpendicular magnetic recording (PMR) write head. The PMR write head can include a main pole comprising a tip portion disposed adjacent to an air bearing surface (ABS) and is configured to interact with a magnetic recording medium. The PMR write head can also include a spin torque oscillator (STO) element disposed adjacent to the main pole. The PMR write head can also include a side shield layer with a portion of the side shield layer disposed adjacent to the ABS. The PMR write head can also include a metallic side gap layer disposed between the main pole and the side shield layer.
摘要:
A TAMR (thermal assisted magnetic recording) write head has a metal blocker formed against a distal end of a waveguide. The waveguide focuses optical radiation on an adjacent plasmon generator where it excites plasmon modes that heat the recording medium. Although the plasmon generator typically heats the recording medium using the plasmon near field to supply the required Joule heating, an unblocked waveguide would also send optical radiation to the medium and surrounding structures producing unwanted heating and device unreliability. The role of the blocker is to block the unwanted optical radiation and, thereby, to limit the heating to that supplied by the plasmon near field.
摘要:
The present embodiments relate to a perpendicular magnetic recording (PMR) write head with an STO element and configured to direct an electric current between elements of the write head. A first example embodiment describes a perpendicular magnetic recording (PMR) write head. The PMR write head can include a main pole comprising a tip portion disposed adjacent to an air bearing surface (ABS) and is configured to interact with a magnetic recording medium. The PMR write head can also include a spin torque oscillator (STO) element disposed adjacent to the main pole. The PMR write head can also include a side shield layer with a portion of the side shield layer disposed adjacent to the ABS. The PMR write head can also include a metallic side gap layer disposed between the main pole and the side shield layer.
摘要:
The present embodiments relate to a heat-assisted magnetic recording (HAMR) write head with a NFT bi-layer structure with a bottom taper, which can be applied to one or both layers of the two layers. A heat-assisted magnetic recording (HAMR) write head can include a main pole including a tip portion configured to interact with a magnetic recording medium at an air-bearing surface (ABS). The HAMR write head can further include a near-field transducer (NFT) that includes a dielectric waveguide, a plasmon generator (PG) layer, and a second layer. The second layer can include a thermo-mechanically stable material disposed adjacent to the PG layer. Further, the PG layer and the second layer can form a taper angle relative to the ABS ranging between 30 and 60 degrees.
摘要:
The present embodiments relate to a perpendicular magnetic recording (PMR) write head with an STO element and configured to direct an electric current between elements of the write head. A first example embodiment describes a perpendicular magnetic recording (PMR) write head. The PMR write head can include a main pole comprising a tip portion disposed adjacent to an air bearing surface (ABS) and is configured to interact with a magnetic recording medium. The PMR write head can also include a spin torque oscillator (STO) element disposed adjacent to the main pole. The PMR write head can also include a side shield layer with a portion of the side shield layer disposed adjacent to the ABS. The PMR write head can also include a metallic side gap layer disposed between the main pole and the side shield layer.
摘要:
The present embodiments relate to a PMR write head with a trailing shield that comprises a FeCoNiM composition. The FeCoNiM composition can be formed via an electroplating process by adding Fe2+, Co2+, Ni2+ and a transition metal salt to an aqueous solution comprised of other additives in an electroplating cell that has an Ni or Co as the anode. The plated HD magnetic material as the trailing shield in a PMR writer can minimize a wide area track erasure (WATE). Further, a high moment high damping shield can lower bit error rate (BER) and increase aerial density capability (ADC) of the write head.