Abstract:
A switching mode power supply (SMPS) and a driving method thereof are provided. The SMPS includes a power supply block that includes a first switch coupled to a first coil of a primary side of a transformer for converting an input voltage, wherein the power supply block supplies power to a second coil and a third coil of a secondary side of the transformer according to operation of the first switch; and a PWM signal generator determines a turn-on time of the first switch according to the input voltage, and the turn-on time is determined regardless of a power magnitude of an output terminal connected to the second coil. Accordingly, screen noise due to a ripple can be eliminated and stress on the switch breakdown due to excessive power input can be reduced to enable an SMPS with stable driving.
Abstract:
A switching mode power supply (SMPS) and a driving method thereof are provided. The SMPS includes a power supply block that includes a first switch coupled to a first coil of a primary side of a transformer for converting an input voltage, wherein the power supply block supplies power to a second coil and a third coil of a secondary side of the transformer according to operation of the first switch; and a PWM signal generator determines a turn-on time of the first switch according to the input voltage, and the turn-on time is determined regardless of a power magnitude of an output terminal connected to the second coil. Accordingly, screen noise due to a ripple can be eliminated and stress on the switch breakdown due to excessive power input can be reduced to enable an SMPS with stable driving.
Abstract:
A converter and a driving method thereof are provided. The converter can determine the output short state of the converter after the soft start is finished by using a detection signal that corresponds to an input signal while a switched is turned on and that corresponds to an output signal while the switch is turned off, so as to convert the input signal into the output signal according to a switching operation of the switch. The converter can determine the overload state of the converter by using a feedback voltage corresponding to the output signal, and terminate the switching operation when the converter is in an output short state or overload state.
Abstract:
Disclosed are a switch controller, a switch control method, a converter using the same, and a driving method thereof. A first voltage is generated by using a voltage that is input to an input terminal, and a soft start signal is generated by using the first voltage during a soft start duration. A switching operation is controlled by using the soft start signal during the soft start duration.
Abstract:
Disclosed are a switch controller, a switch control method, a converter using the same, and a driving method thereof. A first voltage is generated by using a voltage that is input to an input terminal, and a soft start signal is generated by using the first voltage during a soft start duration. A switching operation is controlled by using the soft start signal during the soft start duration.
Abstract:
A switch control device, a switch control method, and a converter using the same are disclosed. The converter includes: a switch; an energy transfer element that converts input energy into output energy according to a switching operation of the switch; and a switch control device that generates a first signal, which is maintained at a first level during a first interval starting from a first time at which the switch is turned on by using a feedback signal corresponding to the output energy and is then gradually lowered from the first level to the feedback signal during a second interval, and controls the switching operation of the switch by using a second signal corresponding to a current flowing at the switch and the first signal. A malfunction due to an LEC can be effectively prevented, and the converter and the converter controller can be implemented to be compact and low-priced.
Abstract:
A converter and a driving method thereof are provided. The converter can determine the output short state of the converter after the soft start is finished by using a detection signal that corresponds to an input signal while a switched is turned on and that corresponds to an output signal while the switch is turned off, so as to convert the input signal into the output signal according to a switching operation of the switch. The converter can determine the overload state of the converter by using a feedback voltage corresponding to the output signal, and terminate the switching operation when the converter is in an output short state or overload state.
Abstract:
Disclosed are a switch controller, a switch control method, a converter using the same, and a driving method thereof. A first voltage is generated by using a voltage that is input to an input terminal, and a soft start signal is generated by using the first voltage during a soft start duration. A switching operation is controlled by using the soft start signal during the soft start duration.
Abstract:
A switch control device, a switch control method, and a converter using the same are disclosed. The converter includes: a switch; an energy transfer element that converts input energy into output energy according to a switching operation of the switch; and a switch control device that generates a first signal, which is maintained at a first level during a first interval starting from a first time at which the switch is turned on by using a feedback signal corresponding to the output energy and is then gradually lowered from the first level to the feedback signal during a second interval, and controls the switching operation of the switch by using a second signal corresponding to a current flowing at the switch and the first signal. A malfunction due to an LEC can be effectively prevented, and the converter and the converter controller can be implemented to be compact and low-priced.
Abstract:
Disclosed are a switch controller, a switch control method, a converter using the same, and a driving method thereof. A first voltage is generated by using a voltage that is input to an input terminal, and a soft start signal is generated by using the first voltage during a soft start duration. A switching operation is controlled by using the soft start signal during the soft start duration.