Abstract:
Embodiments of this disclosure provides a heartbeat information sending method and apparatus, a heartbeat information processing method and apparatus, and a node. One example method includes: determining at least one heartbeat receiving node in which at least two follower data blocks corresponding to at least two leader data blocks in a heartbeat sending node are located; and when the at least one heartbeat receiving node is a single heartbeat receiving node, sending heartbeat information of the heartbeat sending node to the single heartbeat receiving node, where the heartbeat information of the heartbeat sending node is obtained after respective heartbeat information of the at least two leader data blocks are combined.
Abstract:
The present disclosure provides a heartbeat information sending method and apparatus, a heartbeat information processing method and apparatus, and a node. The method includes: determining heartbeat receiving nodes in which at least two follower data blocks corresponding to at least two leader data blocks in a heartbeat sending node are located; and when the heartbeat receiving nodes are a same node, sending heartbeat information of the heartbeat sending node to the heartbeat receiving node, where the heartbeat information of the heartbeat sending node is heartbeat information obtained after respective heartbeat information of the at least two leader data blocks are combined.
Abstract:
A method and apparatus for authentication in a passive optical network are disclosed. In the disclosure, a first terminal serial number of an ONU and a first logic registration code are transmitted from the ONU to an OLT; if the OLT determines that the first terminal serial number does not match a second terminal serial number stored on the OLT, the OLT judges whether the first logic registration code received from the ONU matches a second logic registration code stored on the OLT; the OLT stores the first terminal serial number received from the ONU on the OLT if the first logic registration code matches the second logic registration code.
Abstract:
A method and apparatus for authentication in a passive optical network are disclosed. In the disclosure, a first terminal serial number of an ONU and a first logic registration code are transmitted from the ONU to an OLT; if the OLT determines that the first terminal serial number does not match a second terminal serial number stored on the OLT, the OLT judges whether the first logic registration code received from the ONU matches a second logic registration code stored on the OLT; the OLT stores the first terminal serial number received from the ONU on the OLT if the first logic registration code matches the second logic registration code.
Abstract:
A method and apparatus for authentication in a passive optical network are disclosed. In the disclosure, a first terminal serial number of an ONU and a first logic registration code are transmitted from the ONU to an OLT; if the OLT determines that the first terminal serial number does not match a second terminal serial number stored on the OLT, the OLT judges whether the first logic registration code received from the ONU matches a second logic registration code stored on the OLT; the OLT stores the first terminal serial number received from the ONU on the OLT if the first logic registration code matches the second logic registration code.
Abstract:
A method and apparatus for authentication in a passive optical network are disclosed. In the disclosure, a PLOAM message is sent from an ONU to an OLT, where the PLOAM message includes a first field for carrying an ONU identifier (ONU-ID) and a second field for carrying a first logic registration code, where the ONU-ID is assigned by the OLT to identify the ONU and wherein the first logic registration code is assigned to a user by an operation management system communicatively connected to the OLT and provisioned to the user for authentication. The OLT is configured to judge whether the first logic registration code received from the ONU matches with a second logic registration code provisioned by the operation management system to the OLT and to promote the ONU into service if the first logic registration code matches with the second logic registration code.
Abstract:
An antenna structure includes a first radiator and a second radiator, and a first open end of the first radiator is opposite to and spaced from a second open end of the second radiator. A decoupling circuit is connected between the first open end and the second open end. The first radiator includes a first section and a second section that intersect, and the first section and the second section are respectively located on two adjacent sides of a ground.
Abstract:
A clock oscillator, a clock oscillator production method and use method, and a chip including the clock oscillator are provided. The clock oscillator includes a resonator, a shock-absorbing material layer, and a base, and at least a part of the shock-absorbing material layer is located between the resonator and the base. In the clock oscillator, the shock-absorbing material layer is added between the resonator and the base, and the shock-absorbing material layer can effectively prevent a mechanical wave from being conducted between the base and the resonator, so that the resonator is protected from external vibration. This can ensure, when there is external vibration, that an output frequency of the resonator is not deteriorated and improve shock absorption performance of the clock oscillator.
Abstract:
A flip-chip die package includes a substrate, a die, a plurality of conductive bumps, and a first metal structure, where an upper surface of the die is electrically coupled, using the conductive bumps, to a surface that is of the substrate and that faces the die, and the first metal structure includes a plurality of first metal rods disposed between the substrate and the die, where each first metal rod is electrically coupled to the substrate and the die, and the first metal rods are arranged around a first active functional circuit, and the first active functional circuit includes an electromagnetic radiation capability or an electromagnetic receiving capability in the die.
Abstract:
A service distribution method includes the steps of: firstly generating, by a management system, a corresponding configuration file from service information of a user, and sending the configuration file to an Optical Network Termination (ONT) of the user through an Optical Line Terminal (OLT); and then performing, by the ONT, corresponding configuration in accordance with the configuration file. A service distribution system and a management system are provided. The invention is applied to enable service distribution with good extendibility.