Abstract:
A method includes obtaining measurements associated with one or more controlled variables related to a structure of creped tissue paper during production of the creped tissue paper. The method also includes generating at least one control signal that adjusts one or more manipulated variables associated with the production of the creped tissue paper in order to alter the structure of the creped tissue paper. The one or more controlled variables include a number of folds per unit length of the creped tissue paper, a caliper of the creped tissue paper, a macro crepe of the creped tissue paper, and/or a micro crepe of the creped tissue paper. The manipulated variable(s) could include a crepe percentage, a creping blade angle, a flow of sizing agent, and/or a cross direction (CD) profile of nozzle positions associated with a spray boom that sprays sizing agent onto a Yankee dryer.
Abstract:
A method includes, using at least one processing device, obtaining position measurements and/or tilt angle measurements associated with a tissue web and identifying a stretch measurement associated with the tissue web using the obtained measurements. Identifying the stretch measurement could include using one or more mathematical formulas to calculate the stretch measurement associated with the tissue web using the obtained measurements. The one or more mathematical formulas could be defined using laboratory stretch values of multiple training webs. Different mathematical formulas can be associated with training webs having different characteristics, and the method may further include selecting at least one of the mathematical formulas based on one or more characteristics of the tissue web.
Abstract:
A method includes obtaining measurements associated with one or more controlled variables related to a structure of creped tissue paper during production of the creped tissue paper. The method also includes generating at least one control signal that adjusts one or more manipulated variables associated with the production of the creped tissue paper in order to alter the structure of the creped tissue paper. The one or more controlled variables include a number of folds per unit length of the creped tissue paper, a caliper of the creped tissue paper, a macro crepe of the creped tissue paper, and/or a micro crepe of the creped tissue paper. The manipulated variable(s) could include a crepe percentage, a creping blade angle, a flow of sizing agent, and/or a cross direction (CD) profile of nozzle positions associated with a spray boom that sprays sizing agent onto a Yankee dryer.
Abstract:
A system for in-situ monitoring of particles in a process fluid includes a flow channel having a window for flowing the process fluid therethrough. The window includes an inner surface having a coating thereon that reduces a buildup rate of the particles on the inner surface. A light source is for directing a polarized beam along a first beam path through the window into the process fluid such that an output beam emerges from the process fluid along a second beam path. A polarizing filter positioned in the second beam path is for filtering the output beam. A photodetector is for detecting the output beam after passing the polarizing filter that generates signals that represent images of the particles in the process fluid. A controller coupled to the photodetector is for analyzing the signals to determine at least one parameter related to the particles in the process fluid.
Abstract:
A method includes, using at least one processing device, obtaining position measurements and/or tilt angle measurements associated with a tissue web and identifying a stretch measurement associated with the tissue web using the obtained measurements. Identifying the stretch measurement could include using one or more mathematical formulas to calculate the stretch measurement associated with the tissue web using the obtained measurements. The one or more mathematical formulas could be defined using laboratory stretch values of multiple training webs. Different mathematical formulas can be associated with training webs having different characteristics, and the method may further include selecting at least one of the mathematical formulas based on one or more characteristics of the tissue web.