Abstract:
Embodiments described herein generally relate to a magnetic read head wherein read sensitivity distribution is made asymmetric in the off-track direction. The method of making the magnetic head is also disclosed. The read head may comprise a magneto-resistive effect element with an asymmetric structure around the element in the off-track direction and the read sensitivity profile in the off-track direction may also be asymmetric.
Abstract:
Embodiments of the present invention generally include magnetoresistive heads, such as read heads, having a sensor structure and side shields disposed adjacent to the sensor structure. The distance between the side shields and the sensor structure increase in a direction from an ABS in the off-track direction. The magnetoresistive heads may include tapered surfaces on the side shields or sensor structure, or may include stepped surfaces on the side shields or sensor structure.
Abstract:
Embodiments of the present invention generally relate to a microwave assisted magnetic recording (MAMR) head. The MAMR head includes a main pole, a trailing shield, and a spin torque oscillator (STO) disposed between the main pole and the trailing shield. The STO is recessed from an air bearing surface.
Abstract:
Embodiments of the present invention generally include magnetoresistive heads, such as read heads, having a sensor structure and side shields disposed adjacent to the sensor structure. The distance between the side shields and the sensor structure increase in a direction from an ABS in the off-track direction. The magnetoresistive heads may include tapered surfaces on the side shields or sensor structure, or may include stepped surfaces on the side shields or sensor structure.
Abstract:
The embodiments disclosed generally relate to an STO structure for a magnetic head. The STO structure has an FGL having a greater thickness than the SPL. The SPL may have multiple layers. In one embodiment, a MAMR head comprises a main pole; a trailing shield; and an STO coupled between the main pole and the trailing shield. The STO includes: a first magnetic layer having a first thickness; a non-magnetic spacer layer coupled to the first magnetic layer; and a second magnetic layer having a second thickness and coupled to the non-magnetic spacer layer, wherein the first thickness is greater than the second thickness, wherein a current is charged from the first magnetic layer to the second magnetic layer, and wherein a vertical magnetic anisotropy field of the second magnetic film is less than 0 kOe.
Abstract:
Embodiments disclosed herein generally relate to a MAMR head. The MAMR head includes an STO. The STO has a first magnetic layer, a second magnetic layer and an interlayer disposed between the first and second magnetic layers. One of the first and second magnetic layers is made of a negative polarization material while the other magnetic layer is made of a positive polarization material. As a result, the magnetizations in the first and second magnetic layers are in the same direction when in oscillation, which suppresses the partial cancellation of the magnetizations in the first and second magnetic layers and strengthens the AC magnetic field.
Abstract:
The present disclosure generally relates to a high-frequency oscillator for use in a recording device having a microwave-assisted magnetic recording head. The microwave-assisted magnetic recording head achieves a large assist effect by using an extended spin torque oscillator disposed between a main magnetic pole and a pole opposite the main magnetic pole. The spin torque oscillator obtains a strong high-frequency magnetic field and comprises a first non-magnetic spin scatterer, a reference layer, a first non-magnetic spin transfer layer, a first magnetic field generating layer, a second non-magnetic spin transfer layer, a second magnetic field generating layer, and a second non-magnetic spin scatterer. The spin torque oscillator has a drive current flowing though in the direction from the first magnetic field generating layer to the reference layer.
Abstract:
The embodiments disclosed generally relate to a read head sensor in a magnetic recording head. The read head sensor comprises side shields in addition to the upper and lower shields. The upper shield sensor is a multilayer structure with antiferromagnetic coupling. The side shield is a multilayer structure whereby a lower magnetic layer is separated from an upper magnetic layer. The upper magnetic layer is ferromagnetically coupled to a bottom layer of the upper shield. The bias direction of the read head sensor is antiparallel to the bottom layer of the upper shield.
Abstract:
Embodiments described herein generally relate to a magnetic recording device for recording/reproducing data using the magnetization state of a recording medium. More specifically, embodiments described herein provide an STO structure having an SPL and an FGL with an anti-ferromagnetic coupling interlayer disposed between the SPL and FGL. The anti-ferromagnetic coupling interlayer may enable the STO structure to obtain a high assist effect even when operated with a low conducting current.
Abstract:
Embodiments disclosed herein generally relate to a magnetic disk device employing a MAMR head. The MAMR head includes an STO. The STO comprises an underlayer, an SPL, an interlayer, an FGL, and a capping layer. The SPL is comprised of a high perpendicular magnetic anisotropy material. The SPL has a large effective perpendicular magnetic anisotropy field, and the SPL has a lower magnetic moment than the FGL. An applied current is adapted to flow in a direction from the FGL to the SPL resulting in the magnetization direction of the SPL being almost perpendicular to the FGL and anti-parallel to a head-gap magnetic field due to a relation between a first spin torque directed from the SPL to the FGL and a second spin torque directed from the FGL to the SPL.