Abstract:
A user can control the animation of an object via an interface that includes a control area and a user-manipulable control element. The control area includes an ellipse. The user-manipulable control element includes a three-dimensional arrow with a straight body, a three-dimensional arrow with a curved body, or a sphere. In one embodiment, the interface includes a virtual trackball that is used to manipulate the user-manipulable control element.
Abstract:
A method of associating a computer generated camera with an object in a three-dimensional computer generated space. The method receives a command to associate the camera with an object in the simulated space. Based on the command the method determines a path for moving the camera to a position near the object and aiming the camera at the object. The method creates a video from the simulated camera's perspective of the three-dimensional simulated space.
Abstract:
A method of associating a computer generated camera with an object in a three-dimensional computer generated space. The method receives a command to associate the camera with an object in the simulated space. Based on the command the method determines a path for moving the camera to a position near the object and aiming the camera at the object. The method creates a video from the simulated camera's perspective of the three-dimensional simulated space.
Abstract:
Various embodiments of the invention cover various aspects of behaviors and working with behaviors. One embodiment covers behaviors themselves, including animations that can be produced by applying a behavior to an item and the algorithms underlying these animations. Another embodiment covers using behaviors in conjunction with keyframes. Yet another embodiment covers working with behaviors, including setting parameters of behaviors, saving behaviors, and creating new behaviors. Yet another embodiment covers objects to which behaviors may be applied, including, for example, images, text, particle systems, filters, generators, and other behaviors. Yet another embodiment covers dynamic rendering of objects to which behaviors have been applied, including changing an animation in real-time after the value of a behavior parameter has been changed. Yet another embodiment covers hardware acceleration methods that enable users to work effectively with behaviors.
Abstract:
Some embodiments provide a method that provides tools for defining a scene including media objects in a multi-dimensional space. The method provides a set of user interface tools for adjusting a region of focus for rendering the space from a particular location within a particular field of view. In some embodiments, the region of focus is a first region in the space within the particular field of view and the space further includes a second region outside of the region of focus within the particular field of view. In some embodiments, the method also provides a set of effects for applying to the second region but not the first region to visually indicate the first region as the region of focus within the space and the second region as a region outside of the region of focus within the space.
Abstract:
Some embodiments provide a method that provides tools for defining a scene including media objects in a multi-dimensional space. The method provides a set of user interface tools for adjusting a region of focus for rendering the space from a particular location within a particular field of view. In some embodiments, the region of focus is a first region in the space within the particular field of view and the space further includes a second region outside of the region of focus within the particular field of view. In some embodiments, the method also provides a set of effects for applying to the second region but not the first region to visually indicate the first region as the region of focus within the space and the second region as a region outside of the region of focus within the space.
Abstract:
A user can control the animation of an object via an interface that includes a control area and a user-manipulable control element. In one embodiment, the control area includes an ellipse, and the user-manipulable control element includes an arrow. In yet another embodiment, the control area includes an ellipse, and the user-manipulable control element includes two points on the circumference of the ellipse. In yet another embodiment, the control area includes a first rectangle, and the user-manipulable control element includes a second rectangle. In yet another embodiment, the user-manipulable control element includes two triangular regions, and the control area includes an area separating the two regions.
Abstract:
A method of associating a computer generated camera with an object in a three-dimensional computer generated space. The method receives a command to associate the camera with an object in the simulated space. Based on the command the method determines a path for moving the camera to a position near the object and aiming the camera at the object such that the object. The method creates a video from the simulated camera's perspective of the three-dimensional simulated space.
Abstract:
A method of associating a computer generated camera with an object in a three-dimensional computer generated space. The method receives a command to associate the camera with an object in the simulated space. Based on the command the method determines a path for moving the camera to a position near the object and aiming the camera at the object such that the object. The method creates a video from the simulated camera's perspective of the three-dimensional simulated space.
Abstract:
A user can control the animation of an object via an interface that includes a control area and a user-manipulable control element. In one embodiment, the control area includes an ellipse, and the user-manipulable control element includes an arrow. In yet another embodiment, the control area includes an ellipse, and the user-manipulable control element includes two points on the circumference of the ellipse. In yet another embodiment, the control area includes a first rectangle, and the user-manipulable control element includes a second rectangle. In yet another embodiment, the user-manipulable control element includes two triangular regions, and the control area includes an area separating the two regions.