-
公开(公告)号:US20220005465A1
公开(公告)日:2022-01-06
申请号:US17448119
申请日:2021-09-20
申请人: Google LLC
发明人: Rohit Prakash Prabhavalkar , Zhifeng Chen , Bo Li , Chung-cheng Chiu , Kanury Kanishka Rao , Yonghui Wu , Ron J. Weiss , Navdeep Jaitly , Michiel A.u. Bacchiani , Tara N. Sainath , Jan Kazimierz Chorowski , Anjuli Patricia Kannan , Ekaterina Gonina , Patrick An Phu Nguyen
摘要: A method for performing speech recognition using sequence-to-sequence models includes receiving audio data for an utterance and providing features indicative of acoustic characteristics of the utterance as input to an encoder. The method also includes processing an output of the encoder using an attender to generate a context vector, generating speech recognition scores using the context vector and a decoder trained using a training process, and generating a transcription for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
-
公开(公告)号:US20200027444A1
公开(公告)日:2020-01-23
申请号:US16516390
申请日:2019-07-19
申请人: Google LLC
发明人: Rohit Prakash Prabhavalkar , Zhifeng Chen , Bo Li , Chung-Cheng Chiu , Kanury Kanishka Rao , Yonghui Wu , Ron J. Weiss , Navdeep Jaitly , Michiel A.U. Bacchiani , Tara N. Sainath , Jan Kazimierz Chorowski , Anjuli Patricia Kannan , Ekaterina Gonina , Patrick An Phu Nguyen
摘要: Methods, systems, and apparatus, including computer-readable media, for performing speech recognition using sequence-to-sequence models. An automated speech recognition (ASR) system receives audio data for an utterance and provides features indicative of acoustic characteristics of the utterance as input to an encoder. The system processes an output of the encoder using an attender to generate a context vector and generates speech recognition scores using the context vector and a decoder trained using a training process that selects at least one input to the decoder with a predetermined probability. An input to the decoder during training is selected between input data based on a known value for an element in a training example, and input data based on an output of the decoder for the element in the training example. A transcription is generated for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
-
公开(公告)号:US12106749B2
公开(公告)日:2024-10-01
申请号:US17448119
申请日:2021-09-20
申请人: Google LLC
发明人: Rohit Prakash Prabhavalkar , Zhifeng Chen , Bo Li , Chung-cheng Chiu , Kanury Kanishka Rao , Yonghui Wu , Ron J. Weiss , Navdeep Jaitly , Michiel A. u. Bacchiani , Tara N. Sainath , Jan Kazimierz Chorowski , Anjuli Patricia Kannan , Ekaterina Gonina , Patrick An Phu Nguyen
IPC分类号: G10L15/00 , G06N3/08 , G10L15/02 , G10L15/06 , G10L15/16 , G10L15/22 , G10L25/30 , G10L15/26
CPC分类号: G10L15/16 , G06N3/08 , G10L15/02 , G10L15/063 , G10L15/22 , G10L25/30 , G10L2015/025 , G10L15/26
摘要: A method for performing speech recognition using sequence-to-sequence models includes receiving audio data for an utterance and providing features indicative of acoustic characteristics of the utterance as input to an encoder. The method also includes processing an output of the encoder using an attender to generate a context vector, generating speech recognition scores using the context vector and a decoder trained using a training process, and generating a transcription for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
-
公开(公告)号:US11145293B2
公开(公告)日:2021-10-12
申请号:US16516390
申请日:2019-07-19
申请人: Google LLC
发明人: Rohit Prakash Prabhavalkar , Zhifeng Chen , Bo Li , Chung-Cheng Chiu , Kanury Kanishka Rao , Yonghui Wu , Ron J. Weiss , Navdeep Jaitly , Michiel A. U. Bacchiani , Tara N. Sainath , Jan Kazimierz Chorowski , Anjuli Patricia Kannan , Ekaterina Gonina , Patrick An Phu Nguyen
IPC分类号: G10L15/00 , G10L15/16 , G10L15/22 , G10L15/02 , G06N3/08 , G10L15/06 , G10L25/30 , G10L15/26
摘要: Methods, systems, and apparatus, including computer-readable media, for performing speech recognition using sequence-to-sequence models. An automated speech recognition (ASR) system receives audio data for an utterance and provides features indicative of acoustic characteristics of the utterance as input to an encoder. The system processes an output of the encoder using an attender to generate a context vector and generates speech recognition scores using the context vector and a decoder trained using a training process that selects at least one input to the decoder with a predetermined probability. An input to the decoder during training is selected between input data based on a known value for an element in a training example, and input data based on an output of the decoder for the element in the training example. A transcription is generated for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
-
-
-