Abstract:
Embodiments of the present invention provide a motion tracking method for MR imaging, comprising: exciting an imaging volume of a detected object; shifting a frequency of an FID signal generated by the imaging volume relative to a center frequency as a position of the imaging volume changes; acquiring the FID signal and calculating a frequency shift of the acquired FID signal relative to the center frequency for multiple times; and obtaining a motion trajectory of the detected object in accordance with a change of the frequency shift as a function of time.
Abstract:
Methods and apparatuses for processing MR signal are disclosed herein. An exemplary method comprises: when acquired K-space signals are amplified, assigning a first amplification gain to signals within a first signal region in the K space, and assigning a second amplification gain to signals within a second signal region in the K space.
Abstract:
The present invention provides an image identification method, a magnetic resonance imaging method and an imaging apparatus. Said imaging apparatus comprises: a scanning device configured to scan a target object to obtain projection images of the target object along different directions; a processing unit configured to process the obtained projection images to obtain posture feature information of the target object; a posture determining unit configured to determine a posture of the target object according to the obtained posture feature information. Therefore, the posture of the target object may be automatically recognized during the imaging, and thus the imaging operation is simplified, improving efficiency and reliability of the imaging operation.
Abstract:
Embodiments of the present invention provide a motion tracking method for MR imaging, comprising: exciting an imaging volume of a detected object; shifting a frequency of an FID signal generated by the imaging volume relative to a center frequency as a position of the imaging volume changes; acquiring the FID signal and calculating a frequency shift of the acquired FID signal relative to the center frequency for multiple times; and obtaining a motion trajectory of the detected object in accordance with a change of the frequency shift as a function of time.
Abstract:
Various methods and systems are provided for scanning an image subject along a scan axis. The method includes stitching sectional datasets acquired from different anatomical sections of the image subject based on locations of a landmark in the sectional datasets.
Abstract:
Various methods and systems are provided for acquiring k-space data for magnetic resonance imaging. In one example, after applying a phase encoding gradient, the k-space data of a phase angle is acquired while applying a frequency encoding gradient. An amplitude of the phase encoding gradient and a duration of the phase encoding gradient determined based on each and every of a phase angle of the phase encoding line and a duration of the frequency encoding gradient.
Abstract:
Methods and apparatuses for calibrating a center frequency of MR and an MRI system are disclosed herein. An exemplary method comprises applying a first set of gradient fields, receiving data information acquired by an RF coil and generating a first image; applying a second set of gradient fields in directions different than those of the first set of gradient fields, receiving data information acquired by the RF coil and generating a second image; calculating a shift of the center frequency based on the first image and the second image; and correcting the center frequency based on the shift of the center frequency.
Abstract:
The present invention provides an apparatus and method for controlling a pulse sequence of a magnetic resonance (MR) imaging system, the MR imaging system comprising a radio frequency magnetic field coil and a gradient magnetic field coil, the apparatus for controlling a pulse sequence of the MR imaging system comprising a radio frequency driving unit and a gradient driving unit. The gradient driving unit is used for applying a first motion probing gradient (MPG) pulse and a second MPG pulse to the gradient magnetic field coil successively. The radio frequency driving unit is used for applying a radio frequency excitation pulse to the radio frequency magnetic field coil before the first MPG pulse is applied, and for applying a first 90-degree radio frequency refocusing pulse, a 180-degree radio frequency refocusing pulse and a second 90-degree radio frequency refocusing pulse to the radio frequency magnetic field coil successively between a time when the first MPG pulse is applied and a time when the second MPG pulse is applied.
Abstract:
Various methods and systems are provided for scanning an image subject along a scan axis. The method includes stitching sectional datasets acquired from different anatomical sections of the image subject based on locations of a landmark in the sectional datasets.
Abstract:
Various methods and systems are provided for acquiring k-space data for magnetic resonance imaging. In one example, after applying a phase encoding gradient, the k-space data of a phase angle is acquired while applying a frequency encoding gradient. An amplitude of the phase encoding gradient and a duration of the phase encoding gradient determined based on each and every of a phase angle of the phase encoding line and a duration of the frequency encoding gradient.