Abstract:
An industrial asset may have monitoring nodes that generate current monitoring node values representing a current operation of the industrial asset. An abnormality detection computer may detect when a monitoring node is currently being attacked or experiencing a fault based on a current feature vector, calculated in accordance with current monitoring node values, and a detection model that includes a decision boundary. A model updater (e.g., a continuous learning model updater) may determine an update time-frame (e.g., short-term, mid-term, long-term, etc.) associated with the system based on trigger occurrence detection (e.g., associated with a time-based trigger, a performance-based trigger, an event-based trigger, etc.). The model updater may then update the detection model in accordance with the determined update time-frame (and, in some embodiments, continuous learning).
Abstract:
According to some embodiments, a system and method are provided to model a sparse data asset. The system comprises a processor and a non-transitory computer-readable medium comprising instructions that when executed by the processor perform a method to model a sparse data asset. Relevant data and operational data associated with the newly operational are received. A transfer model based on the relevant data and the received operational data. An input into the transfer model is received and a predication based on data associated with the received operational data and the relevant data is output.
Abstract:
A method of continuously modeling industrial asset performance includes an initial model build block creating a first model based on a combination of an industrial asset historical data, configuration data and training data, filtering at least one of the historical data, configuration data, and training data, and a continuous learning block predicting performance of one or more members of an ensemble of models by evaluating a result of the one or more ensemble members to a predetermined threshold. A model application block pushing a selected model ensemble member to a performance diagnostic center, selecting the member based on comparing model ensemble members to a fielded modeling algorithm. A system and computer-readable medium are disclosed.
Abstract:
According to some embodiments, a system includes a communication device operative to communicate with a user to receive a data set including a plurality of samples at a clustering module; a clustering module to receive the data set, store the data set, and calculate one or more clusters of samples using a clustering strategy; an optimization module to receive and store the one or more clusters of samples from the clustering module and generate one or more samples from the one or more clusters of samples using an optimization strategy; a memory for storing program instructions; at least one sample selection platform processor, coupled to the memory, and in communication with the clustering module and the optimization module and operative to execute program instructions to: calculate one or more clusters of samples based on the clustering strategy by executing the clustering module; analyze the data associated with the one or more clusters received from the clustering module using the optimization strategy associated with the optimization module to automatically select one or more samples from the one or more clusters; and provide one or more samples generated by the optimization module for replication in a validation model. Numerous other aspects are provided.