Abstract:
A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
Abstract:
A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
Abstract:
A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface.
Abstract:
A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface.