Abstract:
A method and apparatus for metal artifact elimination in a medical image. The method includes: obtaining a medical image to be processed; determining whether or not a metal region is contained in the medial image; and performing artifact elimination processing to the medical image when metal regions are contained in the medical image and a metal density value of one of the metal regions is greater than or equal to a preset density value.
Abstract:
A medical scanning system and method for determining scanning parameters based on a scout image, the system includes: a scanned object description module for describing the shape of a scanned object on an initial image; an adjustment module for aligning the shape of the scanned object with the pre-stored average shape; a principal component analysis module for extracting the principal component for the aligned shape of the scanned object; a desired shape acquisition module for imparting weight parameters to said principal component, acquiring a plurality of new shapes, and from said plurality of new shapes, determining the new shape with the maximum cost function value as the desired shape and a scanning parameter setting module for setting scanning parameters based on the desired shape.
Abstract:
A method for a CT scan of a body part, wherein a marker is positioned on the body part. The method comprises: positioning a marker on the body part; performing a scout scan of the area which contains the body part, to acquire a scout image; detecting the marker in the scout image to acquire position information of the marker; and using the position information to navigate the CT scan.
Abstract:
A collimator for use in a CT system made of an X-ray absorbing material, the collimator comprises an imaging aperture having a first width for passage of a first X-ray beam, the first X-ray beam being used for X-ray imaging, and a tracking aperture having a second width for passage of a second X-ray beam, the second X-ray beam being used for X-ray beam tracking.