Abstract:
A gas turbine engine that includes a stage of guide vanes, a compressor downstream from the stage of guide vanes, and a combustor downstream from the compressor. The combustor includes a primary combustion zone and a secondary combustion zone downstream from the primary combustion zone. The primary combustion zone includes an exit configured to channel combustion gases towards the secondary combustion zone. A controller is communicatively coupled with the stage of guide vanes, the controller configured to monitor a temperature at the exit of the primary combustion zone, and selectively open and close the guide vanes to maintain the temperature within a predefined temperature range.
Abstract:
A turbine system includes a number of sensors, each sensor disposed in a respective location of the turbine system and generating a respective signal, a controller capable of generating a controller output, the controller output being at least partially derived from the respective signal from the number of sensors, and an electronic device including memories storing processor-executable routines, and one or more processors configured to access and execute the one or more routines encoded by the one or more memories wherein the one or more routines, when executed, cause the one or more processors to receive one or more inputs, the inputs being at least one of the respective signals from one of the number of sensors, the controller output, or some combination thereof, and generate an audio output using one or more models that incorporate the one or more inputs.
Abstract:
Embodiments of the disclosure relate to systems and methods for holding target turbomachine compressor pressure ratio constant while varying the shaft speed. In order to characterize a load compressor and validate the compressor design, the speed of the load compressor can be changed while controlling the compressor operating line and holding the inlet guide vanes at a constant angle. Discharge control valves can be dynamically adjusted to maintain the pressure ratio equal to the operating line over a range of speeds.
Abstract:
A loading/unloading method for a gas turbine system is disclosed. The gas turbine system includes a combustion section featuring a primary combustion stage with a first plurality of fuel nozzles and a downstream, secondary combustion stage with a second plurality of fuel nozzles. For loading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a higher number of at least one of the first or second plurality of fuel nozzles; and for unloading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a lower number of at least one of the first or second plurality of fuel nozzles. During each combustion mode, regardless of whether loading or unloading, a primary combustion stage exit temperature of a combustion gas flow is controlled to be within a predefined target range corresponding to the respective combustion mode.
Abstract:
Turbomachines and methods of operating turbomachines are provided. The turbomachine may include a compressor, a turbine, and a plurality of combustors downstream from the compressor and upstream from the turbine. The turbomachine may also include a plurality of igniters. Methods of operating a turbomachine may include rotating a shaft of the turbomachine at a first speed and rotating the shaft of the turbomachine at a second speed different from the first speed after rotating the shaft of the turbomachine at the first speed. The methods may also include firing at least one igniter of the plurality of igniters repeatedly throughout the period of time at a regular interval and/or when the rotational speed reaches at least one predetermined speed threshold during the period of time.
Abstract:
A loading/unloading method for a gas turbine system is disclosed. The gas turbine system includes a combustion section featuring a primary combustion stage with a first plurality of fuel nozzles and a downstream, secondary combustion stage with a second plurality of fuel nozzles. For loading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a higher number of at least one of the first or second plurality of fuel nozzles; and for unloading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a lower number of at least one of the first or second plurality of fuel nozzles. During each combustion mode, regardless of whether loading or unloading, a primary combustion stage exit temperature of a combustion gas flow is controlled to be within a predefined target range corresponding to the respective combustion mode.
Abstract:
In one embodiment, a turbine system includes a number of sensors, each of the number of sensors disposed in a respective location of the turbine system, and a controller including a memory storing one or more processor-executable routines and a processor. The processor configured to access and execute the one or more routines encoded by the memory wherein the one or more routines, when executed cause the processor to receive one or more signals from the number of sensors during any stage of operation of the turbine system, and convert the one or more signals to audio output.
Abstract:
A loading/unloading method for a gas turbine system is disclosed. The gas turbine system includes a combustion section featuring a primary combustion stage with a first plurality of fuel nozzles and a downstream, secondary combustion stage with a second plurality of fuel nozzles. For loading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a higher number of at least one of the first or second plurality of fuel nozzles; and for unloading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a lower number of at least one of the first or second plurality of fuel nozzles. During each combustion mode, regardless of whether loading or unloading, a primary combustion stage exit temperature of a combustion gas flow is controlled to be within a predefined target range corresponding to the respective combustion mode.
Abstract:
A loading/unloading method for a gas turbine system is disclosed. The gas turbine system includes a combustion section featuring a primary combustion stage with a first plurality of fuel nozzles and a downstream, secondary combustion stage with a second plurality of fuel nozzles. For loading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a higher number of at least one of the first or second plurality of fuel nozzles; and for unloading, the method progresses through each of a plurality of progressive combustion modes that sequentially activate a lower number of at least one of the first or second plurality of fuel nozzles. During each combustion mode, regardless of whether loading or unloading, a primary combustion stage exit temperature of a combustion gas flow is controlled to be within a predefined target range corresponding to the respective combustion mode.
Abstract:
A gas turbine engine that includes a stage of guide vanes, a compressor downstream from the stage of guide vanes, and a combustor downstream from the compressor. The combustor includes a primary combustion zone and a secondary combustion zone downstream from the primary combustion zone. The primary combustion zone includes an exit configured to channel combustion gases towards the secondary combustion zone. A controller is communicatively coupled with the stage of guide vanes, the controller configured to monitor a temperature at the exit of the primary combustion zone, and selectively open and close the guide vanes to maintain the temperature within a predefined temperature range.