Abstract:
A variation of a method for estimating a quantity of a blood component in a fluid canister includes: within an image of a canister, identifying a reference marker on the canister; selecting an area of the image based on the reference marker; correlating a portion of the selected area with a fluid level within the canister; estimating a volume of fluid within the canister based on the fluid level; extracting a feature from the selected area; correlating the extracted featured with a concentration of a blood component within the canister; and estimating a quantity of the blood component within the canister based on the estimated volume and the concentration of the blood component within the canister.
Abstract:
One variation of the method for managing blood loss of a patient includes: receiving an image of a physical sample; extracting a feature from an area of the image corresponding to the physical sample; estimating a blood volume indicator of the physical sample according to the extracted feature; estimating a patient blood loss based on the blood volume indicator; estimating a euvolemic patient hematocrit based on an estimated patient blood volume and the estimated patient blood loss; receiving a measured patient hematocrit; and generating a volemic status indicator based on a comparison between the measured patient hematocrit and the estimated euvolemic patient hematocrit.
Abstract:
One method for estimating the extracorporeal blood volume in a portion of a physical sample includes: extracting a feature from a portion of an image of the sample; tagging the portion of the image of the sample with a blood volume indicator according to the extracted feature; and estimating the extracorporeal blood volume in at least the portion of the physical sample, associated with the portion of the image of the sample, according to the blood volume indicator.
Abstract:
A variation of a method for estimating a quantity of a blood component in a fluid canister includes: within an image of a canister, identifying a reference marker on the canister; selecting an area of the image based on the reference marking; correlating a portion of the selected area with a fluid level within the canister; estimating a volume of fluid within the canister based on the fluid level; extracting a feature from the selected area; correlating the extracted featured with a concentration of a blood component within the canister; and estimating a quantity of the blood component within the canister based on the estimated volume and the concentration of the blood component within the canister.
Abstract:
A variation of a method for estimating a quantity of a blood component in a fluid canister includes: within an image of a canister, identifying a reference marker on the canister; selecting an area of the image based on the reference marker; correlating a portion of the selected area with a fluid level within the canister; estimating a volume of fluid within the canister based on the fluid level; extracting a feature from the selected area; correlating the extracted featured with a concentration of a blood component within the canister; and estimating a quantity of the blood component within the canister based on the estimated volume and the concentration of the blood component within the canister.
Abstract:
A method of estimating blood loss of patient fluid within a fluid canister. A camera may automatically capture one or more images of the fluid canister based on a detected change in volume of patient fluid within the fluid canister exceeding a threshold. The image is analyzed determine the volume of the patient fluid, and a blood concentration of the patient fluid within the fluid canister. The blood loss is estimated based on the volume and the blood concentration, and displayed on a display. A pixel-based height of the patient fluid within the fluid canister may be calculated based on the surface of the patient fluid. The pixel-based height may be converted to the estimated fluid volume. The image may be a frame of a multi-frame video feed. The image(s) of the multi-frame video feed may be analyzed as the patient fluid is being drawn into the fluid canister.
Abstract:
A method for estimating extracorporeal blood volume in at least a portion of a physical sample. A feature is extracted from an image of the physical sample. The extracorporeal blood volume in the portion of the physical sample is estimated. The estimation may be based on the extracted feature and at least one of the estimated distance and the estimated angle between a capture origin of the image and the portion of the physical sample based on a returned signal transmitted from a distance sensor. The estimated extracorporeal blood volume may be displayed on a display, such an augmented reality overlay in which the image of the portion of the physical sample is displayed with at least one of the estimated extracorporeal blood volume or a sample counter. The sample counter may be indexed for the physical sample after estimating the extracorporeal blood volume.
Abstract:
A method for estimating extracorporeal blood volume in at least a portion of a physical sample. A feature is extracted from an image of the physical sample. The extracorporeal blood volume in the portion of the physical sample is estimated. The estimation may be based on the extracted feature and at least one of the estimated distance and the estimated angle between a capture origin of the image and the portion of the physical sample based on a returned signal transmitted from a distance sensor. The estimated extracorporeal blood volume may be displayed on a display, such an augmented reality overlay in which the image of the portion of the physical sample is displayed with at least one of the estimated extracorporeal blood volume or a sample counter. The sample counter may be indexed for the physical sample after estimating the extracorporeal blood volume.
Abstract:
A system and method for assessing the concentration of a fluid component within a container, the method comprising: receiving data associated with an image of the canister; from the image, detecting a color grid comprising color elements coupled to the canister,; selecting a region of the image corresponding to a portion of the canister; determining a match between a detected color of the region and a shade in the set of colors associated with the color grid captured in the image; based upon a position of a color element corresponding to the shade in the color grid, retrieving a concentration of the blood component associated with the shade of color.
Abstract:
A method for estimating extracorporeal blood volume in at least a portion of a fluid canister. A light source may be activated, and an image of the fluid canister is captured with an optical sensor. The image may be a color frame of a video stream. A color-related feature is extracted from at least a portion of the image. A concentration of hemoglobin is estimated based on the extracted color-related feature. A fluid level of fluid within the fluid canister may be estimated from the image. Extracorporeal blood volume based on the estimated concentration of hemoglobin and a fluid volume or the estimated fluid level. The estimated extracorporeal blood volume is displayed on a display. The estimated extracorporeal blood volume and the estimated fluid level may be monitored over time. The optical sensor may be disposed on a handheld mobile device mounted to a side of the fluid canister.