-
公开(公告)号:US11935279B1
公开(公告)日:2024-03-19
申请号:US18505639
申请日:2023-11-09
Applicant: GUILIN UNIVERSITY OF ELECTRONIC TECHNOLOGY
Inventor: Xipeng Pan , Huahu Deng , Rushi Lan , Zhenbing Liu , Lingqiao Li , Huadeng Wang , Xinjun Bian , Yajun An , Feihu Hou
IPC: G06V10/778 , G06T7/11 , G06T7/136 , G06T7/194 , G06V10/764 , G06V10/776 , G06V10/86 , G06V20/50 , G06V20/70 , G16H30/40 , G16H70/60
CPC classification number: G06V10/778 , G06T7/11 , G06T7/136 , G06T7/194 , G06V10/764 , G06V10/776 , G06V10/86 , G06V20/50 , G06V20/70 , G16H30/40 , G16H70/60 , G06T2207/20021 , G06T2207/20081 , G06T2207/20084 , G06T2207/30024 , G06T2207/30061 , G06T2207/30068 , G06T2207/30096 , G06V2201/03
Abstract: Provided is a weakly supervised pathological image tissue segmentation method based on an online noise suppression strategy, including: acquiring a hematoxylin-eosin (H&E) stained graph, processing the H&E stained graph to obtain a data set, dividing the data set, training a classification network based on a divided data set, and generating a pseudo-label; suppressing a noise existing in the pseudo-label based on the online noise suppression strategy, and training a semantic segmentation network through the pseudo-label after noise suppression and a training set corresponding to the pseudo-label to obtain a prediction result of the semantic segmentation network after the training, and taking the prediction result as a final segmentation result.