-
公开(公告)号:US20250111671A1
公开(公告)日:2025-04-03
申请号:US18900457
申请日:2024-09-27
Applicant: Google LLC
Inventor: Tao Zhu , Jiahui Yu , Jingchen Feng , Kai Chen , Pooya Abolghasemi , Gagan Bansal , Jieren Xu , Hui Miao , Yaping Zhang , Shuchao Bi , Yonghui Wu , Claire Cui , Rohan Anil
IPC: G06V20/40 , G06F40/284 , G10L25/57
Abstract: Methods and systems for media item characterization based on multimodal embeddings are provided herein. A media item including a sequence of video frames is identified. A set of video embeddings representing visual features of the sequence of video frames is obtained. A set of audio embeddings representing audio features of the sequence of video frames is obtained. A set of audiovisual embeddings is generated based on the set of video embeddings and the set of audio embeddings. Each of the set of audiovisual embeddings represents a visual feature and an audio feature of a respective video frame of the sequence of video frames. One or more media characteristics associated with the media item are determined based on the set of audiovisual embeddings.
-
公开(公告)号:US10762422B2
公开(公告)日:2020-09-01
申请号:US15394668
申请日:2016-12-29
Applicant: Google LLC
Inventor: Tal Shaked , Rohan Anil , Hrishikesh Balkrishna Aradhye , Mustafa Ispir , Glen Anderson , Wei Chai , Mehmet Levent Koc , Jeremiah Harmsen , Xiaobing Liu , Gregory Sean Corrado , Tushar Deepak Chandra , Heng-Tze Cheng
Abstract: A system includes one or more computers and one or more storage devices storing instructions that when executed by the one or more computers cause the computers to implement a combined machine learning model for processing an input including multiple features to generate a predicted output for the machine learning input. The combined model includes: a deep machine learning model configured to process the features to generate a deep model output; a wide machine learning model configured to process the features to generate a wide model output; and a combining layer configured to process the deep model output generated by the deep machine learning model and the wide model output generated by the wide machine learning model to generate the predicted output, in which the deep model and the wide model have been trained jointly on training data to generate the deep model output and the wide model output.
-
公开(公告)号:US20250005453A1
公开(公告)日:2025-01-02
申请号:US18710814
申请日:2022-12-12
Applicant: Google LLC
Inventor: Ehsan Amid , Christopher James Fifty , Manfred Klaus Warmuth , Rohan Anil
IPC: G06N20/00
Abstract: Provided is an approach for knowledge distillation based on exporting Principal Components approximations (e.g., Bregman representations) of one or more layer-wise representations of the teacher model. In particular, the present disclosure provides an extension to the original Bregman PCA formulation by incorporating a mean vector and orthonormalizing the principal directions with respect to the geometry of the local convex function around the mean. This extended formulation allows viewing the learned representation as a dense layer, thus casting the problem as learning the linear coefficients of the compressed examples, as the input to this layer, by the student network. Example empirical data indicates that example implementations of the approach improve performance when compared to typical teacher-student training using soft labels.
-
公开(公告)号:US20220253713A1
公开(公告)日:2022-08-11
申请号:US17666488
申请日:2022-02-07
Applicant: Google LLC
Inventor: Ehsan Amid , Manfred Klaus Warmuth , Rohan Anil
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using local layer-wise losses.
-
公开(公告)号:US20200372359A1
公开(公告)日:2020-11-26
申请号:US16991258
申请日:2020-08-12
Applicant: Google LLC
Inventor: Tal Shaked , Rohan Anil , Hrishikesh Balkrishna Aradhye , Mustafa Ispir , Glen Anderson , Wei Chai , Mehmet Levent Koc , Jeremiah Joseph Harmsen , Xiaobing Liu , Gregory Sean Corrado , Tushar Deepak Chandra , Heng-Tze Cheng
Abstract: A system includes one or more computers and one or more storage devices storing instructions that when executed by the one or more computers cause the computers to implement a combined machine learning model for processing an input including multiple features to generate a predicted output for the machine learning input. The combined model includes: a deep machine learning model configured to process the features to generate a deep model output; a wide machine learning model configured to process the features to generate a wide model output; and a combining layer configured to process the deep model output generated by the deep machine learning model and the wide model output generated by the wide machine learning model to generate the predicted output, in which the deep model and the wide model have been trained jointly on training data to generate the deep model output and the wide model output.
-
公开(公告)号:US20250156716A1
公开(公告)日:2025-05-15
申请号:US18837491
申请日:2023-02-10
Applicant: Google LLC
Inventor: Ehsan Amid , Rohan Anil
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using layer-wise Fisher approximations.
-
公开(公告)号:US20240378427A1
公开(公告)日:2024-11-14
申请号:US18661499
申请日:2024-05-10
Applicant: Google LLC
Inventor: Slav Petrov , Yonghui Wu , Andrew M. Dai , David Richard So , Dmitry Lepikhin , Erica Ann Moreira , Gaurav Mishra , Jonathan Hudson Clark , Maxim Krikun , Melvin Jose Johnson Premkumar , Nan Du , Orhan Firat , Rohan Anil , Siamak Shakeri , Xavier Garcia , Yanping Huang , Yong Cheng , Yuanzhong Xu , Yujing Zhang , Zachary Alexander Nado , Eric Jun Jie Ni , Kefan Xiao , Vladimir Feinberg , Jin Young Sohn , Aurko Roy
IPC: G06N3/0475 , G06F40/284
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network to perform any one or more of a variety of machine learning tasks. For example, the neural network can be configured as a generative neural network, e.g., an autoregressive generative neural network.
-
公开(公告)号:US20240378441A1
公开(公告)日:2024-11-14
申请号:US18661447
申请日:2024-05-10
Applicant: Google LLC
Inventor: Slav Petrov , Yonghui Wu , Andrew M. Dai , David Richard So , Dmitry Lepikhin , Erica Ann Moreira , Gaurav Mishra , Jonathan Hudson Clark , Maxim Krikun , Melvin Jose Johnson Premkumar , Nan Du , Orhan Firat , Rohan Anil , Siamak Shakeri , Xavier Garcia , Yanping Huang , Yong Cheng , Yuanzhong Xu , Yujing Zhang , Zachary Alexander Nado , Eric Jun Jie Ni , Kefan Xiao , Vladimir Feinberg , Jin Young Sohn , Aurko Roy
IPC: G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network to perform any one or more of a variety of machine learning tasks. For example, the neural network can be configured as a generative neural network, e.g., an autoregressive generative neural network.
-
公开(公告)号:US20240249193A1
公开(公告)日:2024-07-25
申请号:US18417947
申请日:2024-01-19
Applicant: Google LLC
Inventor: Jared Alexander Lichtarge , Rajiv Mathews , Rohan Anil , Ehsan Amid , Shankar Kumar
IPC: G06N20/00
CPC classification number: G06N20/00
Abstract: Generally, the present disclosure is directed to enhanced federated learning (FL) that employs a set of clients with varying amounts of computational resources (e.g., system memory, storage, and processing bandwidth). To overcome limitations of conventional FL methods that employ a set of clients with varying amounts of computational resources, the embodiments run multi-directional knowledge distillation between the server models produced by each federated averaging (FedAvg) pool, using unlabeled server data as the distillation dataset. By co-distilling the two (or more) models frequently over the course of FedAvg rounds, information is shared between the pools without sharing model parameters. This leads to increased performance and faster convergence (in fewer federated rounds).
-
10.
公开(公告)号:US20240095582A1
公开(公告)日:2024-03-21
申请号:US18075757
申请日:2022-12-06
Applicant: GOOGLE LLC
Inventor: Andrew Hard , Sean Augenstein , Rohan Anil , Rajiv Mathews , Lara McConnaughey , Ehsan Amid , Antonious Girgis
IPC: G06N20/00
CPC classification number: G06N20/00
Abstract: During a round of decentralized learning for updating of a global machine learning (ML) model, remote processor(s) of a remote system may transmit, to a population of computing devices, primary weights for a primary version of the global ML model, and cause each of the computing devices to generate a corresponding update for the primary version of the global ML model. Further, the remote processor(s) may cause the primary version of the global ML model to be updated based on the corresponding updates that are received during the round of decentralized learning. However, the remote processor(s) may receive other corresponding updates subsequent to the round of decentralized learning. Accordingly, various techniques described herein (e.g., FARe-DUST, FeAST on MSG, and/or other techniques) enable the other corresponding updates to be utilized in achieving a final version of the global ML model.
-
-
-
-
-
-
-
-
-