Multi-scale transformer for image analysis

    公开(公告)号:US11887270B2

    公开(公告)日:2024-01-30

    申请号:US17787699

    申请日:2021-07-01

    Applicant: Google LLC

    Abstract: The technology employs a patch-based multi-scale Transformer (300) that is usable with various imaging applications. This avoids constraints on image fixed input size and predicts the quality effectively on a native resolution image. A native resolution image (304) is transformed into a multi-scale representation (302), enabling the Transformer's self-attention mechanism to capture information on both fine-grained detailed patches and coarse-grained global patches. Spatial embedding (316) is employed to map patch positions to a fixed grid, in which patch locations at each scale are hashed to the same grid. A separate scale embedding (318) is employed to distinguish patches coming from different scales in the multiscale representation. Self-attention (508) is performed to create a final image representation. In some instances, prior to performing self-attention, the system may prepend a learnable classification token (322) to the set of input tokens.

    Multi-scale transformer for image analysis

    公开(公告)号:US12217382B2

    公开(公告)日:2025-02-04

    申请号:US18527528

    申请日:2023-12-04

    Applicant: Google LLC

    Abstract: The technology employs a patch-based multi-scale Transformer (300) that is usable with various imaging applications. This avoids constraints on image fixed input size and predicts the quality effectively on a native resolution image. A native resolution image (304) is transformed into a multi-scale representation (302), enabling the Transformer's self-attention mechanism to capture information on both fine-grained detailed patches and coarse-grained global patches. Spatial embedding (316) is employed to map patch positions to a fixed grid, in which patch locations at each scale are hashed to the same grid. A separate scale embedding (318) is employed to distinguish patches coming from different scales in the multiscale representation. Self-attention (508) is performed to create a final image representation. In some instances, prior to performing self-attention, the system may prepend a learnable classification token (322) to the set of input tokens.

    Multi-scale Transformer for Image Analysis
    4.
    发明公开

    公开(公告)号:US20240119555A1

    公开(公告)日:2024-04-11

    申请号:US18527528

    申请日:2023-12-04

    Applicant: Google LLC

    Abstract: The technology employs a patch-based multi-scale Transformer (300) that is usable with various imaging applications. This avoids constraints on image fixed input size and predicts the quality effectively on a native resolution image. A native resolution image (304) is transformed into a multi-scale representation (302), enabling the Transformer's self-attention mechanism to capture information on both fine-grained detailed patches and coarse-grained global patches. Spatial embedding (316) is employed to map patch positions to a fixed grid, in which patch locations at each scale are hashed to the same grid. A separate scale embedding (318) is employed to distinguish patches coming from different scales in the multiscale representation. Self-attention (508) is performed to create a final image representation. In some instances, prior to performing self-attention, the system may prepend a learnable classification token (322) to the set of input tokens.

    Evaluating visual quality of digital content

    公开(公告)号:US12277693B2

    公开(公告)日:2025-04-15

    申请号:US17612372

    申请日:2020-08-06

    Applicant: GOOGLE LLC

    Abstract: Systems, devices, methods, and computer readable medium for evaluating visual quality of digital content are disclosed. Methods can include training machine learning models on images. A request is received to evaluate quality of an image included in a current version of a digital component generated by the computing device. The machine learning models are deployed on the image to generate a score for each quality characteristic of the image. A weight is assigned to each score to generate weighted scores. The weighted scores are combined to generate a combined score for the image. The combined score is compared to one or more thresholds to generate a quality of the image.

    EVALUATING VISUAL QUALITY OF DIGITAL CONTENT

    公开(公告)号:US20240346546A1

    公开(公告)日:2024-10-17

    申请号:US18584716

    申请日:2024-02-22

    Applicant: Google LLC

    CPC classification number: G06Q30/0244

    Abstract: Systems, devices, methods, and computer readable medium for evaluating visual quality of digital content are disclosed. Methods can include identifying content assets including one or more images that are combined to create different digital components distributed to one or more client devices. A quality of each of the one or more images is evaluated using one or more machine learning models trained to evaluate one or more visual aspects that are deemed indicative of visual quality. An aggregate quality for the content assets is determined based, at least in part, on an output of the one or more machine learning models indicating the visual quality of each of the one or more images. A graphical user interface of a first computing device is updated to present a visual indication of the aggregate quality of the content assets.

    Methods, systems, and media for determining perceptual quality indicators of video content items

    公开(公告)号:US12206914B2

    公开(公告)日:2025-01-21

    申请号:US18021636

    申请日:2022-06-08

    Applicant: Google LLC

    Abstract: Methods, systems, and media for determining perceptual quality indicators of video content items are provided. In some embodiments, the method comprises: receiving a video content item; extracting a plurality of frames from the video content item; determining, using a first subnetwork of a deep neural network, a content quality indicator for each frame of the plurality of frames of the video content item; determining, using a second subnetwork of the deep neural network, a video distortion indicator for each frame of the plurality of frames of the video content item; determining, using a third subnetwork of the deep neural network, a compression sensitivity indicator for each frame of the plurality of frames of the video content item; generating a quality level for each frame of the plurality of frames of the video content item that concatenates the content quality indicator, the video distortion indicator, and the compression sensitivity indicator for that frame of the video content item; generating an overall quality level for video content item by aggregating the quality level of each frame of the plurality of frames; and causing a video recommendation to be presented based on the overall quality level of the video content item.

    MULTI-SCALE TRANSFORMER FOR IMAGE ANALYSIS
    9.
    发明公开

    公开(公告)号:US20230222623A1

    公开(公告)日:2023-07-13

    申请号:US17787699

    申请日:2021-07-01

    Applicant: Google LLC

    Abstract: The technology employs a patch-based multi-scale Transformer (300) that is usable with various imaging applications. This avoids constraints on image fixed input size and predicts the quality effectively on a native resolution image. A native resolution image (304) is transformed into a multi-scale representation (302), enabling the Transformer's self-attention mechanism to capture information on both fine-grained detailed patches and coarse-grained global patches. Spatial embedding (316) is employed to map patch positions to a fixed grid, in which patch locations at each scale are hashed to the same grid. A separate scale embedding (318) is employed to distinguish patches coming from different scales in the multiscale representation. Self-attention (508) is performed to create a final image representation. In some instances, prior to performing self-attention, the system may prepend a learnable classification token (322) to the set of input tokens.

    EVALUATING VISUAL QUALITY OF DIGITAL CONTENT

    公开(公告)号:US20220358537A1

    公开(公告)日:2022-11-10

    申请号:US17760535

    申请日:2020-08-06

    Applicant: Google LLC

    Abstract: Systems, devices, methods, and computer readable medium for evaluating visual quality of digital content are disclosed. Methods can include identifying content assets including one or more images that are combined to create different digital components distributed to one or more client devices. A quality of each of the one or more images is evaluated using one or more machine learning models trained to evaluate one or more visual aspects that are deemed indicative of visual quality. An aggregate quality for the content assets is determined based, at least in part, on an output of the one or more machine learning models indicating the visual quality of each of the one or more images. A graphical user interface of a first computing device is updated to present a visual indication of the aggregate quality of the content assets.

Patent Agency Ranking